• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trust and Profit Sensitive Ranking for the Deep Web and On-line Advertisements

January 2012 (has links)
abstract: Ranking is of definitive importance to both usability and profitability of web information systems. While ranking of results is crucial for the accessibility of information to the user, the ranking of online ads increases the profitability of the search provider. The scope of my thesis includes both search and ad ranking. I consider the emerging problem of ranking the deep web data considering trustworthiness and relevance. I address the end-to-end deep web ranking by focusing on: (i) ranking and selection of the deep web databases (ii) topic sensitive ranking of the sources (iii) ranking the result tuples from the selected databases. Especially, assessing the trustworthiness and relevances of results for ranking is hard since the currently used link analysis is inapplicable (since deep web records do not have links). I formulated a method---namely SourceRank---to assess the trustworthiness and relevance of the sources based on the inter-source agreement. Secondly, I extend the SourceRank to consider the topic of the agreeing sources in multi-topic environments. Further, I formulate a ranking sensitive to trustworthiness and relevance for the individual results returned by the selected sources. For ad ranking, I formulate a generalized ranking function---namely Click Efficiency (CE)---based on a realistic user click model of ads and documents. The CE ranking considers hitherto ignored parameters of perceived relevance and user dissatisfaction. CE ranking guaranteeing optimal utilities for the click model. Interestingly, I show that the existing ad and document ranking functions are reduced forms of the CE ranking under restrictive assumptions. Subsequently, I extend the CE ranking to include a pricing mechanism, designing a complete auction mechanism. My analysis proves several desirable properties including revenue dominance over popular Vickery-Clarke-Groves (VCG) auctions for the same bid vector and existence of a Nash equilibrium in pure strategies. The equilibrium is socially optimal, and revenue equivalent to the truthful VCG equilibrium. Further, I relax the independence assumption in CE ranking and analyze the diversity ranking problem. I show that optimal diversity ranking is NP-Hard in general, and that a constant time approximation algorithm is not likely. / Dissertation/Thesis / Ph.D. Computer Science 2012
2

Adaptive trading agent strategies using market experience

Pardoe, David Merrill 22 June 2011 (has links)
Along with the growth of electronic commerce has come an interest in developing autonomous trading agents. Often, such agents must interact directly with other market participants, and so the behavior of these participants must be taken into account when designing agent strategies. One common approach is to build a model of the market, but this approach requires the use of historical market data, which may not always be available. This dissertation addresses such a case: that of an agent entering a new market in which it has no previous experience. While the agent could adapt by learning about the behavior of other market participants, it would need to do so in an online fashion. The agent would not necessarily have to learn from scratch, however. If the agent had previous experience in similar markets, it could use this experience to tailor its learning approach to its particular situation. This dissertation explores methods that a trading agent could use to take advantage of previous market experience when adapting to a new market. Two distinct learning settings are considered. In the first, an agent acting as an auctioneer must adapt the parameters of an auction mechanism in response to bidder behavior, and a reinforcement learning approach is used. The second setting concerns agents that must adapt to the behavior of competitors in two scenarios from the Trading Agent Competition: supply chain management and ad auctions. Here, the agents use supervised learning to model the market. In both settings, methods of adaptation can be divided into four general categories: i) identifying the most similar previously encountered market, ii) learning from the current market only, iii) learning from the current market but using previous experience to tune the learning algorithm, and iv) learning from both the current and previous markets. The first contribution of this dissertation is the introduction and experimental validation of a number of novel algorithms for market adaptation fitting these categories. The second contribution is an exploration of the degree to which the quantity and nature of market experience impact the relative performance of methods from these categories. / text

Page generated in 0.1053 seconds