1 |
Cybernetic autonomy: an analysis and critique of adaptive learning systemsMadaio, Michael Adam 08 June 2015 (has links)
There has recently been great promise and interest in the use of adaptive learning systems to provide personalized course content, tailored to the ability levels and pace of individual students. Yet, not all the technologies in this space provide the same capabilities. In this thesis I analyze a representative group of adaptive learning providers according to the pedagogical model of their design. Then, I discuss case studies of two systems to analyze their design according to a humanist design philosophy and a more cybernetic design tradition, and I conclude with a set of design guidelines and selection criteria for faculty and administrators interested in evaluating, selecting, and implementing an adaptive learning system that fits their pedagogical values.
|
2 |
Constructivist learning : an operational approach for designing adaptive learning environments supporting cognitive flexibilityVu Minh, Chieu 30 September 2005 (has links)
Constructivism is a learning theory that states that people learn by actively constructing their own knowledge, based on prior knowledge. Many different perspectives exist on constructivist pedagogical principles and on how to apply them to instructional design. It is thus not only difficult to evaluate the conformity of existing learning systems with constructivist principles, it is also quite hard to ensure that a new learning system being designed will ultimately facilitate and stimulate constructivist learning.
A critical characteristic often mentioned in learning systems is adaptability. That is, the ability to provide a learning experience that is continuously tailored to the needs of the individual learner.
The present research aims to help designing truly constructivist and adaptive learning systems. For that purpose, it is necessary to clarify what constructivism entails in an operational manner: I propose a set of criteria for certain aspects of constructivism and use it both as guidelines for designing learning systems and for evaluating the conformity of learning systems with these constructivist principles.
One facet often mentioned as being strongly relevant to constructivism is cognitive flexibility, meaning the ability to spontaneously restructure one's knowledge, in many ways, in adaptive response to radically changing situational demands.
The claim I make in the present thesis is that the operational approach I proposed makes the design and use of adaptive learning environments supporting cognitive flexibility straightforward and effective. More specifically, the dissertation makes four main contributions to the interdisciplinary field of learning and e-Learning technology.
Firstly, the thesis proposes operational criteria for cognitive flexibility and presents both justifications and examples of their use. The set of criteria may be used in different instructional situations for designing and evaluating conditions of learning.
Secondly, on the basis of the criteria for cognitive flexibility, the thesis proposes an operational instructional design process and shows an example of its use. The process may also be applied in a variety of instructional situations for the design and use of learning systems fostering cognitive flexibility.
Thirdly, the thesis introduces a new, open-source, domain-independent, Web-based adaptive e-Learning platform, named COFALE, and illustrates an example of its use. The platform may be used for designing adaptive learning systems supporting cognitive flexibility in various domains.
And fourthly, the thesis reports on a preliminary evaluation of the example handled by COFALE with actual learners. The study provides a certain number of encouraging results for fostering cognitive flexibility by means of ICT-based learning conditions.
|
3 |
A Multi-agent Adaptive Learning System For Distance EducationSerce, Fatma Cemile 01 January 2008 (has links) (PDF)
The adaptiveness provides uniquely identifying and monitoring the learner&rsquo / s learning activities according to his/her respective profile. The adaptive intelligent learning management systems (AILMS) help a wide range of students to achieve their learning goals effectively by delivering knowledge in an adaptive or individualized style through online learning settings. This study presents a multi-agent system, called MODA, developed to provide adaptiveness in learning management systems (LMS). A conceptual framework for adaptive learning systems is proposed for this purpose.
The framework is based on the idea that adaptiveness is the best matching between the learner profile and the course content profile. The learning styles of learners and the content type of learning material are used to match the learner to the most suitable content.
The thesis covers the pedagogical framework applied in MODA, the technical and multi-agent architectures of MODA, the TCP-IP based protocol providing communication between MODA and LMS, and a sample application of the system to an open source learning management system, OLAT. The study also discusses the possibilities of future interests.
|
4 |
The carbon cycle and systems thinking : Conceptualizing a visualization-based learning system for teaching the carbon cycle that supports systems thinkingMani Kashani, Mina January 2021 (has links)
Today, climate change, has become one of the greatest societal challenges of our time. This challenge requires an accurate understanding of climate change for making informed decisions regarding the environmental issues. The carbon cycle is one of the earth’s complicated cycles that has a critical role in the planet’s climate. Developing a thorough perception about this complex cycle uncovers how human activities impact the planet and reveals the connection between multiple environmental issues.Perceiving this complex cycle requires systems thinking skills that enable students to recognize components of the carbon cycle and understand the interrelating dynamic relationship between them. Establishing systems thinking skills and developing a thorough perception about the carbon cycle is a difficult matter for students. Adaptive visualisation-based tutoring systems have a great potential for facilitating teaching and learning cyclical models and systems thinking in schools. Such systems consider the students’ needs and provide personalised feedback that can guide individuals more effectively throughout the learning process. This thesis project intends to use diagrammatic visualizations, systems thinking, and adaptive tutoring systems as three technical approaches for conceptualising a learning system that aims to teach the carbon cycle. The framework of this thesis project is formed in relation to a research project called ‘Tracing Carbon’ focusing on science education for pupils on grade 7-9.
|
5 |
AdaptMLearning: uma proposta de sistema de aprendizagem adaptativo e inteligente. / AdaptMLearning: a proposal of intelligent and adaptive learning system.Oliveira, Ivan Carlos Alcântara de 15 May 2013 (has links)
Sistemas de Aprendizagem Adaptativos e Inteligentes, tema de pesquisa recente no mundo, são ambientes com arquitetura e algoritmos específicos, que consideram as características individuais de cada estudante para selecionar o objeto de aprendizagem mais adequado a ser oferecido ao aluno. O rápido desenvolvimento da infraestrutura sem fio e o amplo uso de dispositivos móveis na vida diária das pessoas motivam as pesquisas relativas ao uso desses dispositivos na educação, proporcionando o m-learning. Assim, relacionado a essas linhas de pesquisa, este trabalho propõe a arquitetura AdaptMLearning, elaborada para prover a aprendizagem em plataformas móveis e não móveis, considerando a seleção de objetos de aprendizagem que melhor se adaptam a diversos aspectos, tais como: dados sobre a tecnologia utilizada para acesso; informações sobre o estilo de aprendizagem de um estudante; desempenho e tempo associados à interação do estudante com o objeto de aprendizagem; conhecimentos adquiridos pelo estudante em consonância ao conteúdo do curso; e a garantia de que não só o professor possa configurar as adaptações a serem oferecidas ao seu curso, como também o aluno tenha a possibilidade de informar sua preferência pelos tipos de mídia. Essa arquitetura é baseada no modelo de referência AHAM para sistemas adaptativos AEHS, contemplando a quádrupla: espaço do conhecimento, modelo do usuário, observações e modelo de adaptação, referente à definição lógica desses sistemas. Na AdaptMLearning, foram desenvolvidos alguns algoritmos, utilizando-se o modelo FSLSM, relacionado aos estilos de aprendizagem de um estudante e o padrão IEEE 1484 para catalogação dos objetos de aprendizagem e uso de alguns atributos de suas categorias, associados às dimensões dos estilos de aprendizagem do modelo FSLSM. O algoritmo calcula um peso para um objeto catalogado em cada dimensão e permite uma busca pelo objeto mais adequado ao estilo do estudante, além de usar a computação fuzzy, para avaliar se o estudante pode sofrer mudanças no seu estilo, deve receber reforço ou necessita de um reestudo em determinado assunto de um curso, por meio de resultados obtidos com o tempo de estudo e desempenho. Também, este trabalho apresenta o desenvolvimento e a avaliação de um simulador para a arquitetura AdaptMLearning e seus algoritmos, realizada utilizando diversos cenários de simulação, envolvendo estudantes, cursos e tecnologias com diferentes configurações. Assim sendo, com base nos resultados obtidos por meio da avaliação, foi possível discutir, analisar e identificar o potencial de uso da AdaptMLearning e de seus algoritmos em uma situação real para elaboração de um ambiente de aprendizagem ou agregação a um ambiente existente. / Intelligent and Adaptive Learning Systems, subject of recent research in the world, are environments with specific architectures and algorithms, designed considering the individual characteristics of each student. The rapid development of wireless infrastructures and wide use of mobile devices in people\'s everyday life encourage research about the use of these devices in education, providing the mlearning. In the context of such research, this work proposes the AdaptMLearning architecture that was designed to be a learning infrastructure for mobile and nonmobile platforms. This architecture provides a selection of learning objects that takes into account as adaptation criteria the following data: the mobile device\'s technological specification; the student\'s learning style information, his/her performance and spent time associated to the student\'s interaction with the learning object; previously acquired knowledge by the student related to the course\'s content. In addition, it also allows the teacher to interfere in the adaptation criteria used during the study simulation, and allows the student to indicate his/her preferences for media types. This architecture is based on AHAM reference model for adaptive systems AEHS and uses the quadruple: the knowledge space, the user model, the observations and the model adaptation, referring to the logical definition of these systems. To implement the AdaptMLearning architecture some algorithms using the FSLSM model related to the student\'s learning styles were developed. The algorithms use the IEEE 1484 for cataloging learning objects and some of its categories and attributes associated with dimensions of learning styles FSLSM model, are used to compute a weight of an object in each dimension allowing a search of the most appropriate object according to the student\'s learning styles; and the use of fuzzy computing, considering that the student\'s learning style can change, determines if the student has to receive reinforcement or need a new study in a particular subject of a course, when the student gets unsatisfactory results in terms of timing and performance in a course\'s subject. Also, this work also presents the development and evaluation of a simulator for the AdaptMLearning architecture and their algorithms. The evaluation of the simulator was done by means of many simulations scenarios, considering students, courses and technologies with different settings. Based on the results obtained from the evaluation it was possible to discuss, analyze and identify the potential use of AdaptMLearning architecture and their algorithms in a real situation for developing a learning environment or its aggregation to an existing environment.
|
6 |
AdaptMLearning: uma proposta de sistema de aprendizagem adaptativo e inteligente. / AdaptMLearning: a proposal of intelligent and adaptive learning system.Ivan Carlos Alcântara de Oliveira 15 May 2013 (has links)
Sistemas de Aprendizagem Adaptativos e Inteligentes, tema de pesquisa recente no mundo, são ambientes com arquitetura e algoritmos específicos, que consideram as características individuais de cada estudante para selecionar o objeto de aprendizagem mais adequado a ser oferecido ao aluno. O rápido desenvolvimento da infraestrutura sem fio e o amplo uso de dispositivos móveis na vida diária das pessoas motivam as pesquisas relativas ao uso desses dispositivos na educação, proporcionando o m-learning. Assim, relacionado a essas linhas de pesquisa, este trabalho propõe a arquitetura AdaptMLearning, elaborada para prover a aprendizagem em plataformas móveis e não móveis, considerando a seleção de objetos de aprendizagem que melhor se adaptam a diversos aspectos, tais como: dados sobre a tecnologia utilizada para acesso; informações sobre o estilo de aprendizagem de um estudante; desempenho e tempo associados à interação do estudante com o objeto de aprendizagem; conhecimentos adquiridos pelo estudante em consonância ao conteúdo do curso; e a garantia de que não só o professor possa configurar as adaptações a serem oferecidas ao seu curso, como também o aluno tenha a possibilidade de informar sua preferência pelos tipos de mídia. Essa arquitetura é baseada no modelo de referência AHAM para sistemas adaptativos AEHS, contemplando a quádrupla: espaço do conhecimento, modelo do usuário, observações e modelo de adaptação, referente à definição lógica desses sistemas. Na AdaptMLearning, foram desenvolvidos alguns algoritmos, utilizando-se o modelo FSLSM, relacionado aos estilos de aprendizagem de um estudante e o padrão IEEE 1484 para catalogação dos objetos de aprendizagem e uso de alguns atributos de suas categorias, associados às dimensões dos estilos de aprendizagem do modelo FSLSM. O algoritmo calcula um peso para um objeto catalogado em cada dimensão e permite uma busca pelo objeto mais adequado ao estilo do estudante, além de usar a computação fuzzy, para avaliar se o estudante pode sofrer mudanças no seu estilo, deve receber reforço ou necessita de um reestudo em determinado assunto de um curso, por meio de resultados obtidos com o tempo de estudo e desempenho. Também, este trabalho apresenta o desenvolvimento e a avaliação de um simulador para a arquitetura AdaptMLearning e seus algoritmos, realizada utilizando diversos cenários de simulação, envolvendo estudantes, cursos e tecnologias com diferentes configurações. Assim sendo, com base nos resultados obtidos por meio da avaliação, foi possível discutir, analisar e identificar o potencial de uso da AdaptMLearning e de seus algoritmos em uma situação real para elaboração de um ambiente de aprendizagem ou agregação a um ambiente existente. / Intelligent and Adaptive Learning Systems, subject of recent research in the world, are environments with specific architectures and algorithms, designed considering the individual characteristics of each student. The rapid development of wireless infrastructures and wide use of mobile devices in people\'s everyday life encourage research about the use of these devices in education, providing the mlearning. In the context of such research, this work proposes the AdaptMLearning architecture that was designed to be a learning infrastructure for mobile and nonmobile platforms. This architecture provides a selection of learning objects that takes into account as adaptation criteria the following data: the mobile device\'s technological specification; the student\'s learning style information, his/her performance and spent time associated to the student\'s interaction with the learning object; previously acquired knowledge by the student related to the course\'s content. In addition, it also allows the teacher to interfere in the adaptation criteria used during the study simulation, and allows the student to indicate his/her preferences for media types. This architecture is based on AHAM reference model for adaptive systems AEHS and uses the quadruple: the knowledge space, the user model, the observations and the model adaptation, referring to the logical definition of these systems. To implement the AdaptMLearning architecture some algorithms using the FSLSM model related to the student\'s learning styles were developed. The algorithms use the IEEE 1484 for cataloging learning objects and some of its categories and attributes associated with dimensions of learning styles FSLSM model, are used to compute a weight of an object in each dimension allowing a search of the most appropriate object according to the student\'s learning styles; and the use of fuzzy computing, considering that the student\'s learning style can change, determines if the student has to receive reinforcement or need a new study in a particular subject of a course, when the student gets unsatisfactory results in terms of timing and performance in a course\'s subject. Also, this work also presents the development and evaluation of a simulator for the AdaptMLearning architecture and their algorithms. The evaluation of the simulator was done by means of many simulations scenarios, considering students, courses and technologies with different settings. Based on the results obtained from the evaluation it was possible to discuss, analyze and identify the potential use of AdaptMLearning architecture and their algorithms in a real situation for developing a learning environment or its aggregation to an existing environment.
|
Page generated in 0.1097 seconds