• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and Control of SPIDER Satellite Components

Ruggiero, Eric John 18 August 2005 (has links)
Space satellite technology is heading in the direction of ultra-large, lightweight structures deployable on orbit. Minimal structural mass translates into minimal launch costs, while increased satellite bus size translates into significant bandwidth improvement for both radar and optical applications. However, from a structural standpoint, these two goals are in direct conflict with one another, as large, flexible structures possess terrible dynamic properties and minimal effective bandwidth. Since the next level of research will require active dynamic analysis, vibration control, and shape morphing control of these satellites, a better-suited name for this technology is Super Precise Intelligent Deployables for Engineered Reconnaissance, or SPIDER. Unlike wisps of cobweb caught in the wind, SPIDER technology will dictate the functionality and versatility of the satellite much like an arachnid weaving its own web. In the present work, a rigorous mathematical framework based on distributed parameter system theory is presented in describing the dynamics of augmented membranous structures. In particular, Euler-Bernoulli beam theory and thin plate theory are used to describe the integration of piezoelectric material with membranes. In both the one and two dimensional problems, experimental validation is provided to support the developed models. Next, the linear quadratic regulator (LQR) control problem is defined from a distributed parameter systems approach, and from this formulation, the functional gains of the respective system are gleaned. The functional gains provide an intelligent mapping when designing an observer-based control system as they pinpoint important sensory information (both type and spatial location) within the structure. Further, an experimental investigation into the dynamics of membranes stretched over shallow, air-filled cavities is presented. The presence of the air-filled cavity in close proximity to the membrane creates a distributed spring and damping effect, thus creating desirable system dynamics from an optical or radar application perspective. Finally, in conjunction with the use of a pressurized cavity with a membrane optic, a novel basis is presented for describing incoming wavefront aberrations. The new basis, coined the clamped Zernike polynomials, provides a mapping for distributed spatial actuation of a membrane mirror that is amiable to the clamped boundary conditions of the mechanical lens. Consequently, based on the work presented here and being carried out in cooperation with the Air Force Research Laboratory Directed Energy Directorate (AFRL / DE), it is envisioned that a 1 m adaptive membrane optic is on the verge of becoming a reality. / Ph. D.
2

Application and System Design of Elastomer Based Optofluidic Lenses

Savidis, Nickolaos January 2012 (has links)
Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens.The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic cylindrical lens coupled with a previously discussed defocus singlet lens. We then couple this optofluidic phoropter with relay optics and Shack-Hartmann wavefront sensing technology to produce an auto-phoropter device. The auto-phoropter system combines a refractometer designed Shack-Hartmann wavefront sensor with the compact refractive fluidic lens phoropter. This combination allows for the identification and control of ophthalmic cylinder, cylinder axis, as well as refractive error. The closed loop system of the fluidic phoropter with refractometer enables for the creation of our see-through auto-phoropter system. The design and testing of several generations of transmissive see-through auto-phoropter devices are presented in this section.
3

Formation des planètes géantes autour des étoiles de faibles masses : contraintes observationnelles en imagerie (optique adaptative) / Understanding the formation of giant planets around low mass stars : direct observational constraints with adaptive optic imaging

Lannier, Justine 26 September 2016 (has links)
L'étude des exoplanètes, et en particulier celle des planètes géantes gazeuses, est une branche jeune et florissante de l'astrophysique moderne. Les grandes problématiques qui ont émergé des études sur cette population de planètes consistent à comprendre comment elles se sont formées, comment elles ont spatialement et temporellement évolué, et comment elles influencent d'éventuelles autres planètes au sein des systèmes stellaires. Afin d'apporter des réponses à ces questions, il a été nécessaire de développer des techniques d'observation et des outils d'analyse des données les plus performants possibles. C'est dans ce cadre que j'ai effectué mon travail de thèse, qui s'est articulé autour de trois projets.En premier lieu, je me suis intéressée à étudier le taux d'occurrence des planètes géantes gazeuses en orbite autour des naines M. Pour réaliser cette étude statistique, j'ai utilisé des données de deux relevés NaCo, le premier étant consacré aux naines M, et le second étant constitué d'étoiles AF et ayant été précédemment étudié par des membres de notre équipe. J'ai développé un code Monte Carlo, et me suis servie de la logique de la contraposition pour mener une étude comparative des résultats de ces deux relevés. J'ai également associé des gammes de rapports de masses entre la planète et son étoile à des mécanismes de formation privilégiés. J'en ai conclu que la formation des planètes géantes gazeuses formée par accrétion sur coeur était favorisée si ces planètes se situaient autour d'étoiles AF plutôt que des naines M, pour des séparations allant de 8 à 400 unités astronomiques. La fréquence des planètes géantes gazeuses reste toutefois faible quelque soit la masse de l'étoile considérée (typiquement <20%).Je me suis par la suite intéressée à développer un outil statistique capable de combiner des données de vitesses radiales et d'imagerie directe afin d'apporter des contraintes supplémentaires sur la population de planètes géantes situées à toutes les séparations, pour des systèmes particuliers. Le code que j'ai écrit repose sur une génération Monte Carlo de planètes synthétiques. Je l'ai appliqué sur les données de vitesses radiales et d'imagerie d'étoiles jeunes et proches : AUMic, ßPictoris, HD113337, et HD95086. Les futures applications pourront être nombreuses à la fois parce que les données de vitesses radiales sont de plus en plus abondantes, et parce que les instruments de haut contraste et haute résolution angulaire permettent de sonder des séparations toujours plus courtes.Grâce à ces deux premiers projets de ma thèse, j'ai pris en main les outils de réduction de données développés à l'IPAG, et j'ai développé des outils statistiques me permettant de commencer à mener mon dernier projet. Cet ultime projet consiste en l'observation, la réduction et l'analyse de données de vitesses radiales HARPS et d'imagerie SPHERE obtenues conjointement pour un set de naines K5-M5, proches et jeunes. L'analyse de l'ensemble des données va permettre d'apporter de fortes contraintes sur les populations de planètes géantes gazeuses en orbite autour des étoiles de faible masse, depuis les très courtes jusqu'aux plus longues séparations. / Studying exoplanets, and in particular gaseous giant planets, is a new field of modern astrophysics. Understanding how the giant planets form, dynamically evolve, evolve with time, and have an impact on potential other planets within a stellar system are part of the biggest challenges of this science. The development of the most efficient observational technics and optimal analysis tools have been necessary to bring answers to these problematics. This is the context in which I realized my PhD thesis. I present in this manuscript the three projects that I led during these last three years.First, I studied the occurrence rate of the giant planets that orbit around M dwarfs. To realize this statistical study, I used NaCo data from two surveys. The first survey was composed of M dwarfs, the second was made of AF stars that were already studied by members of our team. I developed a Monte Carlo code, and used the contrapositive logic to lead a comparative analysis of these two surveys. I also associated stellar to planet mass ratios to planetary formation scenarios. My conclusions are that giant planets can more easily be formed by core accretion around AF stars than around M dwarfs, for separations between 8 and 400 astronomical units. Wide-orbit giant planets are rare whatever the stellar mass (basically <20%).Then, I developed a statistical tool that combines radial velocity and direct imaging data of specific stars, to better constrain the giant planet population at all separations. The code that I wrote is based on a Monte Carlo generation of synthetic planet populations. I applied this code on radial velocity and direct imaging data from young and nearby stars: AUMic, ßPictoris, HD113337, and HD95086. The future applications will be numerous thanks to the increase of the time baseline of radial velocity data and thanks to new high contrast and high resolution instruments able to probe shorter regions.These first two projects have allowed me to understand how to reduce and analyse data, and to develop statistical tools useful for my last project. This last project consists of observing, reducing and analyzing radial velocity and direct imaging data of a sample of K5-M5 young and nearby dwarfs. This project will bring strong constraints on the gaseous giant planet population that orbits around low mass stars, from short to wider separations.

Page generated in 0.0621 seconds