• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 4
  • 2
  • Tagged with
  • 25
  • 25
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Arithmetic structures in random sets

Hamel, Mariah 11 1900 (has links)
We prove various results in additive combinatorics for subsets of random sets. In particular we extend Sarkozy's theorem and a theorem of Green on long arithmetic progressions in sumsets to dense subsets of random sets with asymptotic density 0. Our proofs require a transference argument due to Green and Green-Tao which enables us to apply known results for sets of positive upper density to subsets of random sets which have positive relative density. We also prove a density result which states that if a subset of a random set has positive relative density, then the sumset of the subset must have positive upper density in the integers.
2

Arithmetic structures in random sets

Hamel, Mariah 11 1900 (has links)
We prove various results in additive combinatorics for subsets of random sets. In particular we extend Sarkozy's theorem and a theorem of Green on long arithmetic progressions in sumsets to dense subsets of random sets with asymptotic density 0. Our proofs require a transference argument due to Green and Green-Tao which enables us to apply known results for sets of positive upper density to subsets of random sets which have positive relative density. We also prove a density result which states that if a subset of a random set has positive relative density, then the sumset of the subset must have positive upper density in the integers.
3

Arithmetic structures in random sets

Hamel, Mariah 11 1900 (has links)
We prove various results in additive combinatorics for subsets of random sets. In particular we extend Sarkozy's theorem and a theorem of Green on long arithmetic progressions in sumsets to dense subsets of random sets with asymptotic density 0. Our proofs require a transference argument due to Green and Green-Tao which enables us to apply known results for sets of positive upper density to subsets of random sets which have positive relative density. We also prove a density result which states that if a subset of a random set has positive relative density, then the sumset of the subset must have positive upper density in the integers. / Science, Faculty of / Mathematics, Department of / Graduate
4

Topics in additive combinatorics

Fiz Pontiveros, Gonzalo January 2013 (has links)
No description available.
5

Multifold sums and products over R, and combinatorial problems on sumsets

Bush, Albert 21 September 2015 (has links)
We prove a new bound on a version of the sum-product problem studied by Chang. By introducing several combinatorial tools, this expands upon a method of Croot and Hart which used the Tarry-Escott problem to build distinct sums from polynomials with specific vanishing properties. We also study other aspects of the sum-product problem such as a method to prove a dual to a result of Elekes and Ruzsa and a conjecture of J. Solymosi on combinatorial geometry. Lastly, we study two combinatorial problems on sumsets over the reals. The first involves finding Freiman isomorphisms of real-valued sets that also preserve the order of the original set. The second applies results from the former in proving a new Balog-Szemeredi type theorem for real-valued sets.
6

A survey of Roth's Theorem on progressions of length three

Nishizawa, Yui 06 December 2011 (has links)
For any finite set B and a subset A⊆B, we define the density of A in B to be the value α=|A|/|B|. Roth's famous theorem, proven in 1953, states that there is a constant C>0, such that if A⊆{1,...,N} for a positive integer N and A has density α in {1,...,N} with α>C/loglog N, then A contains a non-trivial arithmetic progression of length three (3AP). The proof of this relies on the following dichotomy: either 1) A looks like a random set and the number of 3APs in A is close to the probabilistic expected value, or 2) A is more structured and consequently, there is a progression P of about length α√N on which A∩P has α(1+cα) for some c>0. If 1) occurs, then we are done. If 2) occurs, then we identify P with {1,...,|P|} and repeat the above argument, whereby the density increases at each iteration of the dichotomy. Due to the density increase in case 2), an argument of this type is called a density increment argument. The density increment is obtained by studying the Fourier transforms of the characterstic function of A and extracting a structure out of A. Improving the lower bound for α is still an active area of research and all improvements so far employ a density increment. Two of the most recent results are α>C(loglog N/log N)^{1/2} by Bourgain in 1999 and α>C(loglog N)^5/log N by Sanders in 2010. This thesis is a survey of progresses in Roth's theorem, with a focus on these last two results. Attention was given to unifying the language in which the results are discussed and simplifying the presentation.
7

Finite Field Models of Roth's Theorem in One and Two Dimensions

Hart, Derrick N. 05 June 2006 (has links)
Recent work on many problems in additive combinatorics, such as Roth's Theorem, has shown the usefulness of first studying the problem in a finite field environment. Using the techniques of Bourgain to give a result in other settings such as general abelian groups, the author gives a walk through, including proof, of Roth's theorem in both the one dimensional and two dimensional cases (it would be more accurate to refer to the two dimensional case as Shkredov's Theorem). In the one dimensional case the argument is at its base Meshulam's but the structure will be essentially Green's. Let Ϝⁿ [subscript p], p ≠ 2 be the finite field of cardinality N = pⁿ. For large N, any subset A ⊂ Ϝⁿ [subscript p] of cardinality ∣A ∣≳ N ∕ log N must contain a triple of the form {x, x + d, x + 2d} for x, d ∈ Ϝⁿ [subscript p], d ≠ 0. In the two dimensional case the argument is Lacey and McClain who made considerable refinements to this argument of Green who was bringing the argument to the finite field case from a paper of Shkredov. Let Ϝ ⁿ ₂ be the finite field of cardinality N = 2ⁿ. For all large N, any subset A⊂ Ϝⁿ ₂ × Ϝⁿ ₂ of cardinality ∣A ∣≳ N ² (log n) − [superscript epsilon], ε <, 1, must contain a corner {(x, y), (x + d, y), (x, y + d)} for x, y, d ∈ Ϝⁿ₂ and d ≠ 0.
8

Some results on sums and products

Pryby, Christopher Ian 12 January 2015 (has links)
We demonstrate new results in additive combinatorics, including a proof of a conjecture by J. Solymosi: for every epsilon > 0, there exists delta > 0 such that, given n² points in a grid formation in R², if L is a set of lines in general position such that each line intersects at least n^{1-delta} points of the grid, then |L| < n^epsilon. This result implies a conjecture of Gy. Elekes regarding a uniform statistical version of Freiman's theorem for linear functions with small image sets.
9

A survey of Roth's Theorem on progressions of length three

Nishizawa, Yui 06 December 2011 (has links)
For any finite set B and a subset A⊆B, we define the density of A in B to be the value α=|A|/|B|. Roth's famous theorem, proven in 1953, states that there is a constant C>0, such that if A⊆{1,...,N} for a positive integer N and A has density α in {1,...,N} with α>C/loglog N, then A contains a non-trivial arithmetic progression of length three (3AP). The proof of this relies on the following dichotomy: either 1) A looks like a random set and the number of 3APs in A is close to the probabilistic expected value, or 2) A is more structured and consequently, there is a progression P of about length α√N on which A∩P has α(1+cα) for some c>0. If 1) occurs, then we are done. If 2) occurs, then we identify P with {1,...,|P|} and repeat the above argument, whereby the density increases at each iteration of the dichotomy. Due to the density increase in case 2), an argument of this type is called a density increment argument. The density increment is obtained by studying the Fourier transforms of the characterstic function of A and extracting a structure out of A. Improving the lower bound for α is still an active area of research and all improvements so far employ a density increment. Two of the most recent results are α>C(loglog N/log N)^{1/2} by Bourgain in 1999 and α>C(loglog N)^5/log N by Sanders in 2010. This thesis is a survey of progresses in Roth's theorem, with a focus on these last two results. Attention was given to unifying the language in which the results are discussed and simplifying the presentation.
10

Subsets of finite groups exhibiting additive regularity

Gutekunst, Todd M. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: Robert Coulter, Dept. of Mathematical Sciences. Includes bibliographical references.

Page generated in 0.0779 seconds