• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 340
  • 101
  • 32
  • 32
  • 14
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 643
  • 122
  • 85
  • 66
  • 65
  • 63
  • 55
  • 54
  • 45
  • 45
  • 44
  • 42
  • 40
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

In Vitro Ischaemic Preconditioning of Isolated Rabbit Cardiomyocytes: Effects of Selective Adenosine Receptor Blockade and Calphostin C

Armstrong, Stephen, Ganote, Charles E. 01 September 1994 (has links)
Objective: The aim was to determine if in vitro ischaemic preincubation can precondition cardiomyocytes and if the responses to adenosine receptor antagonists are similar to those previously determined during "metabolic" preconditioning with glucose deprivation or adenosine agonists. Methods: Isolated rabbit cardiomyocytes were preconditioned with 10 min of ischaemic preincubation, followed by a 30 min postincubation before the final sustained ischaemic period. The protein kinase C inhibitor calphostin C or the adenosine receptor antagonists 8-sulphophenyltheophylline (SPT), BW 1433U, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were added either during the preincubation or into the final ischaemic pellet. Adenosine deaminase (10 U · ml-1) was added during ischaemic preincubation. Rates of contracture and extent of injury were determined by sequential sampling and assessment of trypan blue permeability following 85 mOsM swelling. Results: Myocytes were preconditioned by a 10 min in vitro ischaemic preincubation. Preincubation with 100 μM SPT or with adenosine deaminase, or addition of 200 nM calphostin C into the final ischaemic pellet did not alter rates of rigor contracture but nearly abolished protection. A significant degree of protection was maintained following ischaemic preincubation with the highly selective adenosine A1 receptor blocker DPCPX (10 μM), while the antagonist BW 1433U (1 μM) severely limited protection. SPT and BW 1433U added only into the final ischaemic pellet of preconditioned cells significantly blocked protection, while protection was maintained in the presence of DPCPX. Conclusions: Ischaemic preconditioning of cardiomyocytes is blocked by adenosine receptor antagonists known to bind to A3 receptors but not by DPCPX which has high affinity for A1 receptors, but little affinity for A3 receptors. Maintenance of protection during the final ischaemic phase has a similar receptor specificity. Blockade of protein kinase C activity abolishes protection. Ischaemic and metabolic preconditioning in vitro appear to occur through similar pathways.
212

Adenosine Receptor Specificity in Preconditioning of Isolated Rabbit Cardiomyocytes: Evidence of a<sub>3</sub> Receptor Involvement

Armstrong, Stephen, Ganote, Charles E. 01 January 1994 (has links)
Objective: The aim was to further characterise an experimental model of preconditioning of isolated rabbit cardiomyocytes and to determine the role of adenosine receptor subtypes in initiation of the protective response. Methods: Isolated myocytes were subjected to 5 min preincubation in the presence or absence of glucose and various agonists and antagonists of adenosine receptors. Ischaemic pelleting was preceded by a 30 min postincubation period. Rate and extent of injury during ischaemia was determined by sequential sampling of the pelleted cells and assessment of trypan blue permeability following 85 mOsm swelling. Results: Myocytes were preconditioned with a 30-50% reduction of injury by a 5 min glucose-free preincubation. Substitution of 5 mM pyruvate for glucose during preincubation did not prevent the protective response. Protection was maintained over a 60-180 min postincubation period. Protection was blocked by 100 μM of the non-specific adenosine A1A2, antagonist SPT, both when added only during preincubation or only into the ischaemic pellet. Calphostin C, a specific protein kinase C inhibitor at 200 nM, added to the ischaemic pellet blocked protection. Preincubation with R-PIA, the adenosine A1 agonist, did not precondition at an A1 selective dose of 1 μM, but did at 100 μM. The selective A2 agonist CGS 12680 (1 μM) did not precondition. The selective A1/A3 adenosine agonist, APNEA, preconditioned at 1 μM and 200 nM dose levels. Preconditioning induced either by 200 nM APNEA or by glucose-free preincubation was not blocked by 200 nM or 10 μM of the A1 antagonist DPCPX, which has extremely low affinity for A3 receptors, but was blocked by 1 μM of the A1/A3 adenosine antagonist BW 1433U83. Conclusions: Preconditioning can be induced in isolated myocytes by a 5 min preincubation/30 min postincubation protocol, and a similar protection induced by adenosine agonists with A3, but not A1 selectivity. Preconditioning is blocked by non-selective or selective A1/A3 adenosine antagonists and a specific protein kinase C inhibitor, but not by A1 antagonists with little affinity for A3 receptors. The results suggest that preconditioning in isolated rabbit myocytes requires participation of adenosine receptors with agonist/antagonist binding characteristics of the A3 subtype, and is likely to be mediated by activation of protein kinase C.Cardiovascular Research 1994;28:1049-1056.
213

Potassium Channels and Preconditioning of Isolated Rabbit Cardiomyocytes: Effects of Glyburide and Pinacidil

Armstrong, Stephen C., Liu, Guang S., Downey, James M., Ganote, Charles E. 01 January 1995 (has links)
Calcium tolerant rabbit cardiomyocytes, isolated by collagenase perfusion, were preincubated for varying periods of time followed by resuspension in fresh media and centrifugation into an ischaemic pellet with restricted extracellular fluid. Pellets were incubated for 240 min under oil at 37°C to mimic severe ischaemia. Time to onset of ischaemic contracture (rod to square transformation) and trypan blue permeability following resuspension in 85 mOsm media were monitored at sequential times. The protocol of Series 1 was a 5-10 min pre-incubation, immediately followed by ischaemic pelleting. Preincubation with pinacidil (50 μm) protected cells from ischaemic insult, but pinacidil added only into the ischaemic pellet did not protect. Protection was abolished by the protein kinase (PKC) inhibitors chelerythrine (10 μm) added with pinacidil and calphostin C (200nm) added only into the ischaemic pellet. Neither PKC inhibitor had an effect on injury of untreated ischaemic myocytes (data not shown). Series 2-5 were preconditioning protocols with a 10 min intervention period, followed by a 30 min oxygenated drug-free period, prior to ischaemic pelleting. In series 2 pinacidil protected cells from ischaemic insult and this protection was abolished when glyburide (10 μm) was present during preincubation, or during post-incubation and ischaemia. Glyburide only partially inhibited the protection when glyburide was added only into the ischaemic pellet. In Series 3, 8-sulfophenyltheophyline (SPT)(100 μm) or adenosine deaminase during preincubation, or SPT only added into the ischaemic pellet abolished pinacidil’s protection. In Series 4, cardiomyocytes were ischaemically preconditioned by pelleting for 10 min followed by 30 min reoxygenation. Glyburide during initial ischaemic blocked protection, but when added during post incubation and into the final pellet protection was not reduced. In Series 5 8-cyclopentyl-1,3, dipropylxanthine (DPCPX) (10 μm) added into the final pellet abolished protection by pinacidil, but not protection following ischaemic preconditioning. In contrast to pinacidil, ischaemically preconditioned cells maintain protection in the presence of glyburide, indicating that: (1) pinacidil does not exactly mimic preconditioning and (2) ischaemically preconditioned cells do not require opened K+ATP channels for protection, although they appear to be important during initiation of the preconditioned state. It is hypothesized that pinacidil opening of K+ channels may facilitate induction of preconditioning.
214

Investigation of the enzymes involved in adenosine metabolism in vascular endothelial cells from rat skeletal muscle

Le, Gengyun., 樂耕耘. January 2009 (has links)
published_or_final_version / Physiology / Doctoral / Doctor of Philosophy
215

Microvascular obstruction following percutaneous coronary interventionfor coronary artery disease

Lee, Chi-hang, 李志恆 January 2009 (has links)
published_or_final_version / Medicine / Master / Doctor of Medicine
216

The role of adenosine in remote ischaemic conditioning

Contractor, Hussain January 2012 (has links)
Strategies to reduce infarct size in ischaemia-reperfusion (IR) syndromes such as acute myocardial infarction are of high clinical and scientific interest. Remote ischaemic preconditioning (rIPC) is one such strategy but its mechanisms remain incompletely understood. Multiple lines of evidence from animal studies suggest that the endogenous purine nucleoside adenosine is a key mediator of preconditioning pathways but no evidence exists as to adenosine’s role in the more complex physiology of humans. The work in this thesis aims to elucidate the role of endogenous adenosine in the physiological phenomenon of rIPC and to examine the role of exogenous adenosine in triggering preconditioning-like states. In a randomised, placebo controlled study using healthy volunteers and the human forearm model of ischaemia-reperfusion injury, I demonstrate that delivery of the adenosine receptor antagonist caffeine, prior to the initiation of a rIPC stimulus abrogates the protective effect of rIPC on IR. By then selectively infusing caffeine to achieve high local but low systemic concentrations, I also demonstrate that adenosine receptor activation is important in the ‘trigger’ phase of rIPC rather than in the ‘effector’ phase and that blockade of the trigger phase effectively inhibits the release of a circulating humoral protective factor. These studies provide evidence of the crucial role of adenosine receptor activation in human rIPC, demonstrating their sites of action and illuminating their potential mechanism of action. To study whether exogenously delivered adenosine can recapitulate preconditioning-like states, in initial studies in a large mammal model of acute myocardial infarction, I demonstrate that adenosine, given after the onset of ischaemia, but prior to reperfusion, significantly reduces myocardial infarct size. In a subsequent study, translating these findings to humans with coronary disease, I demonstrate that the delivery of adenosine in a range of concentrations is able to illicit the release of a circulating preconditioning factor which is transferrable across species and can reduce infarct size in a murine model of myocardial IR.
217

Identification of Endogenous Substrates for ADP-Ribosylation in Rat Liver

Loflin, Paul T. (Paul Tracey) 05 1900 (has links)
Bacterial toxins have been shown to modify animal cell proteins in vivo with ADPR. Animal cells also contain endogenous enzymes that can modify proteins. Indirect evidence for the existence in vivo of rat liver proteins modified by ADPR on arginine residues has been reported previously. Presented here is direct evidence for the existence of ADP-ribosylarginine in rat liver proteins. Proteins were subjected to exhaustive protease digestion and ADP-ribosyl amino acids were isolated by boronate chromatography.
218

Adenosinové receptory a transportéry v srdci potkana: vliv adaptace na chronickou hypoxii / Adenosine receptors and transporters in rat myocardium: the effect of adaptation to chronic hypoxia

Neumannová, Kateřina January 2016 (has links)
2. Abstract Adaptation to chronic hypoxia is in addition to ischemic preconditioning one of the two known cardioprotective mechanisms. The precise molecular basis of these processes is still not fully explained. There are some studies that suggest the possible involvement of the adenosinergic signaling system in this adaptation. In this work, we focused on the characterization of the adenosinergic system in the myocardium of rats adapted to two regimens of chronic hypoxia - a protective continuous normobaric hypoxia (CNH) and non-protective intermittent hypoxia (INH/R, 23 h hypoxia and 1 h normoxia). Initially, we compared the total amount of adenosine receptors in samples from different groups of adapted animals. We discovered changes mainly at A2B receptor, which increased at CNH and declined in INH/R. This result suggests the possible involvement of A2B receptors in cardioprotection afforded by adaptation to chronic hypoxia. Furthermore, we investigated the distribution of various types of adenosine receptors and transporters in the plasma membrane of cardiac cells. We observed that A2A and A3 localize in membrane microdomains together with membrane enzyme CD73 that produces adenosine in the extracellular space by degrading AMP. A1 and A2B receptors similarly as nucleoside transporters ENT1, ENT2 and...
219

Studium adenosinových receptorů a jejich signalizace v myokardu potkana / A study of adenosine receptors and their signaling in the rat myocardium

Eichlerová, Lenka January 2015 (has links)
Adenosine plays a critical role in the heart signalling while affecting heart rate, contractility or coronary flow. Nowadays, four adenosine receptor subtypes are distinguished which are present in most of tissues and cells: A1, A2A, A2B and A3. All these receptors belong to the family of G protein-coupled receptors. Upon activation, their main target is an enzyme adenylyl cyclase which produces an important second messenger cAMP. The main goal of this thesis was characterization of adenosine receptors in the rat myocardium, assessment of their distribution, binding properties and signalling. We examined a possible disparity in receptors distribution between the left and right ventricles using SDS-PAGE electrophoresis and Western blotting. The same methods have been used in studies of adenosine receptor distribution in lipid rafts. Samples of lipid rafts and soluble fraction were prepared using a nonionic detergent Triton X-100. We did not find any evidence of different distribution between the left and right ventricles and our results did not confirm compartmentation of the receptors either. For determination of binding properties of the receptors we used radioligand binding assays with the A1 selective radioligand [H3 ]DPCPX. We did not observe any significant difference between the receptor...
220

A2B adenosine receptor modulation of TNF-alpha expression in mouse rheumatoid arthritis

Ciocca, Caroline 12 July 2017 (has links)
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that leads to destruction of articular cartilage and subchondral bone at the synovial joints. Clinically, RA is characterized by swelling, tenderness and destruction of synovial joints, which results in severe disability and premature mortality. In the RA disease state, inflammation in the synovial compartment is regulated by a complex cytokine and chemokine network, including tumor necrosis factor α (TNFα), which has been clinically demonstrated a key mediator of RA pathogenesis. TNFα can be found in elevated levels in the synovial fluid and serum of RA patients and the role of the cytokine in both the inflammation and bone destruction of RA suggests it is important in the understanding of disease progression as well as the development of therapeutic targets. Many of the biological processes that mediate RA, including bone turnover and cartilage resorption, involve signaling pathways that are mediated by adenosine and its receptors. The A2B adenosine receptor (A2BAR) is highly expressed in the synoviocytes of RA patients and the receptor has a similar expression profile in humans and mice. The goal of this thesis was to use a mouse model of RA to understand how the A2B adenosine receptor modulates TNFα and other destructive enzymes that contribute to the progression of the disease. A collagen antibody-induced arthritis (CAIA) mouse model was used to determine the effect of A2BAR ablation on systemic and joint-specific TNFα expression. Comparable arthritic conditions were observed in CAIA mice of both A2BAR knockout (KO) and wild-type (WT) genotypes and the absence of the A2BAR gene did not result in any observable differences in the gross arthritic state created in each genotype. Immunohistochemistry analysis of TNFα expression in mouse paws revealed that paw joints from CAIA A2BAR KO mice exhibited more robust TNFα staining compared to CAIA WT specimens of the same treatment duration. ELISA analysis of the serum showed that only CAIA A2BAR KO mice had greater serum production of TNFα at day 10 after induction of arthritis. TNFα and matrix metalloproteinase-9 mRNA expression were also elevated in KO CAIA knee joints in comparison to WT CAIA knee joints; however, WT CAIA mice were found to have higher levels of aggrecanase mRNA compared to KO mice. These results suggest that while the loss of A2BAR activity leads to a hyper-inflammatory state, the A2B adenosine receptor alone is not responsible for the progressive inflammation of the synovial joints associated with rheumatoid arthritis.

Page generated in 0.0366 seconds