• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase structure of five-dimensional anisotropic lattice gauge theories

Lambrou, Eliana January 2016 (has links)
The idea that we live in a higher-dimensional space was first introduced almost 100 years ago. In the past two decades many extra-dimensional models have been proposed in order to solve fundamental problems of nature such as the hierarchy problem. Most of them need exploration via non-perturbative approaches and Lattice Gauge Theory provides a tool for doing this. In this thesis, we make attempts to find a non-perturbative way to localize gauge fields that arise from five-dimensional SU(2) gauge theories on 3-branes. In 1984, it was proposed that the phase diagram of anisotropic extra-dimensional lattice gauge theories inherits a new phase, called the "layered" phase, where the gauge fields behave as four-dimensional ones. This was shown for the abelian case, but the existence of this new phase for the simplest non-abelian group, SU(2), was still in doubt. We investigated this system in large volumes using Monte Carlo simulations and we could not find a second order phase transition from a five-dimensional to a continuous four-dimensional theory when all directions were kept large. This made the model unattractive for further exploration as nothing suggests that a non-trivial fixed point could exist. The above investigation was done in a flat background metric. We extended the previous work by putting our theory into a slice of AdS5 space, usually called the warped background. The motivation for this is that our SU(2) theory looks like the gauge-sector of the Randall-Sundrum model, which does not have a concrete solution to the problem of localization of the gauge fields on a 3-brane. We carried out our investigation using the Mean-Field Approach and we present novel results for the phase diagram and measurements of important observables. In our implementation we have a finite extent of the extra dimension and one layer (or 3-brane) on each extra-dimensional coordinate. At weak coupling, we observed that each layer decouples one at a time in the transition to the fully layered phase of the system, forming a mixed phase, whereas there is a strong and sharp transition between the fully layered and the strong-coupling phase. Within the mixed phase, close to the transition into the layered phase, we found evidence that the system is four-dimensional acquiring a Yukawa mass and resembling a Higgs-like phase. The mixed phase grows as the curvature increases suggesting that for an infinite extra dimension the entire weak-coupling phase is mixed.

Page generated in 0.0439 seconds