• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Water adsorption on aggregates of spherical aerosol nano particles

Nie, Chu 01 November 2005 (has links)
A three dimensional integral equation is developed in order to compute water adsorption onto aggregates of spherical aerosol nano particles. The integral equation is derived from molecular density functional theory, with a weighted density approximation and a direct correlation function interpolation rule. Only required inputs are the direct correlation functions of the uniform fluid or gas at both high-density and low-density limits. The equation has been tested on argon adsorption onto a graphite planer substrate; the result corresponds well with previous simulation work. Adsorption of both noble gas and water onto a single spherical nano particle and aggregates of spherical nano particles has been computed with the developed equation. For the adsorption of a single spherical substrate, layer structure has been found, the adsorption shows a transition property when substrate size increases and when the substrate size is over 100?? the adsorption is nearly the same as that of a planer substrate. For adsorption of aggregates of spherical nano particles, not only much strong adsorption appears but also adsorption property changes with different configurations of spherical nano particles.
2

Water adsorption on aggregates of spherical aerosol nano particles

Nie, Chu 01 November 2005 (has links)
A three dimensional integral equation is developed in order to compute water adsorption onto aggregates of spherical aerosol nano particles. The integral equation is derived from molecular density functional theory, with a weighted density approximation and a direct correlation function interpolation rule. Only required inputs are the direct correlation functions of the uniform fluid or gas at both high-density and low-density limits. The equation has been tested on argon adsorption onto a graphite planer substrate; the result corresponds well with previous simulation work. Adsorption of both noble gas and water onto a single spherical nano particle and aggregates of spherical nano particles has been computed with the developed equation. For the adsorption of a single spherical substrate, layer structure has been found, the adsorption shows a transition property when substrate size increases and when the substrate size is over 100?? the adsorption is nearly the same as that of a planer substrate. For adsorption of aggregates of spherical nano particles, not only much strong adsorption appears but also adsorption property changes with different configurations of spherical nano particles.

Page generated in 0.1095 seconds