1 |
Water adsorption on aggregates of spherical aerosol nano particlesNie, Chu 01 November 2005 (has links)
A three dimensional integral equation is developed in order to compute water adsorption onto aggregates of spherical aerosol nano particles. The integral equation is derived from molecular density functional theory, with a weighted density approximation and a direct correlation function interpolation rule. Only required inputs are the direct correlation functions of the uniform fluid or gas at both high-density and low-density limits. The equation has been tested on argon adsorption onto a graphite planer substrate; the result corresponds well with previous simulation work. Adsorption of both noble gas and water onto a single spherical nano particle and aggregates of spherical nano particles has been computed with the developed equation. For the adsorption of a single spherical substrate, layer structure has been found, the adsorption shows a transition property when substrate size increases and when the substrate size is over 100?? the adsorption is nearly the same as that of a planer substrate. For adsorption of aggregates of spherical nano particles, not only much strong adsorption appears but also adsorption property changes with different configurations of spherical nano particles.
|
2 |
Water adsorption on aggregates of spherical aerosol nano particlesNie, Chu 01 November 2005 (has links)
A three dimensional integral equation is developed in order to compute water adsorption onto aggregates of spherical aerosol nano particles. The integral equation is derived from molecular density functional theory, with a weighted density approximation and a direct correlation function interpolation rule. Only required inputs are the direct correlation functions of the uniform fluid or gas at both high-density and low-density limits. The equation has been tested on argon adsorption onto a graphite planer substrate; the result corresponds well with previous simulation work. Adsorption of both noble gas and water onto a single spherical nano particle and aggregates of spherical nano particles has been computed with the developed equation. For the adsorption of a single spherical substrate, layer structure has been found, the adsorption shows a transition property when substrate size increases and when the substrate size is over 100?? the adsorption is nearly the same as that of a planer substrate. For adsorption of aggregates of spherical nano particles, not only much strong adsorption appears but also adsorption property changes with different configurations of spherical nano particles.
|
Page generated in 0.0974 seconds