• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling adsorption of organic compounds on activated carbon : a multivariate approach / Modellering av adsorption av organiska förreningar i aktivt kol : ett multivariat angreppssätt

Wu, Jufang January 2004 (has links)
Activated carbon is an adsorbent that is commonly used for removing organic contaminants from air due to its abundant pores and large internal surface area. This thesis is concerned with the static adsorption capacity and adsorption kinetics for single and binary organic compounds on different types of activated carbon. These are important parameters for the design of filters and for the estimation of filter service life. Existing predictive models for adsorption capacity and kinetics are based on fundamental “hard” knowledge of adsorption mechanisms. These models have several drawbacks, especially in complex situations, and extensive experimental data are often needed as inputs. In this work we present a systematic approach that can contribute to the further development of predictive models, especially for complex situations. The approach is based on Multivariate Data Analysis (MVDA), which is ideally suited for the development of soft models without incorporating any assumptions about the mathematical form or fundamental physical principles involved. Adsorption capacity and adsorption kinetics depend on the properties of the carbon and the adsorbate as well as experimental conditions. Therefore, to make general statements regarding adsorption capacity and kinetics it is important for the resulting models to be representative of the conditions they will simulate. Accordingly, the first step in the investigations underlying this thesis was to select a minimum number of representative and chemically diverse organic compounds. The next steps were to study the dependence of the derived affinity coefficient, β, in the Dubinin-Radushkevich equation on properties of organic compounds and to establish a new, improved model. This new model demonstrates the importance of adding descriptors for the specific interaction with the carbon surface to the size and shape descriptors. The adsorption capacities of the same eight organic compounds at low relative pressures were correlated with compound properties. It was found that different compound properties are important in the various stages of adsorption, reflecting the fact that different mechanisms are involved. Ideal adsorbed solution theory (IAST) in combination with the Freundlich equation was developed to predict the adsorption capacities of binary organic compound mixtures. A new model was proposed for predicting the rate coefficient of the Wheeler-Jonas equation which is valid for breakthrough ratios up to 20%. Finally, it was shown that the Wheeler-Jonas equation can be adapted to describe the breakthrough curves of binary mixtures. New models were proposed for predicting its parameters, the adsorption rate coefficients, and the adsorption capacities for both components of the binary mixture. Thus, multivariate data analysis can not only be used to assist in the understanding of adsorption mechanisms, but also contribute to the development of predictive models of adsorption capacity and breakthrough time for single and binary organic compounds.
2

Modeling adsorption of organic compounds on activated carbon : A multivariate approach / Modellering av adsorption av organiska förreningar i aktivt kol : Ett multivariat angreppssätt

Wu, Jufang January 2004 (has links)
<p>Activated carbon is an adsorbent that is commonly used for removing organic contaminants from air due to its abundant pores and large internal surface area. This thesis is concerned with the static adsorption capacity and adsorption kinetics for single and binary organic compounds on different types of activated carbon. These are important parameters for the design of filters and for the estimation of filter service life. Existing predictive models for adsorption capacity and kinetics are based on fundamental “hard” knowledge of adsorption mechanisms. These models have several drawbacks, especially in complex situations, and extensive experimental data are often needed as inputs. In this work we present a systematic approach that can contribute to the further development of predictive models, especially for complex situations. The approach is based on Multivariate Data Analysis (MVDA), which is ideally suited for the development of soft models without incorporating any assumptions about the mathematical form or fundamental physical principles involved. </p><p>Adsorption capacity and adsorption kinetics depend on the properties of the carbon and the adsorbate as well as experimental conditions. Therefore, to make general statements regarding adsorption capacity and kinetics it is important for the resulting models to be representative of the conditions they will simulate. Accordingly, the first step in the investigations underlying this thesis was to select a minimum number of representative and chemically diverse organic compounds. The next steps were to study the dependence of the derived affinity coefficient, β, in the Dubinin-Radushkevich equation on properties of organic compounds and to establish a new, improved model. This new model demonstrates the importance of adding descriptors for the specific interaction with the carbon surface to the size and shape descriptors. The adsorption capacities of the same eight organic compounds at low relative pressures were correlated with compound properties. It was found that different compound properties are important in the various stages of adsorption, reflecting the fact that different mechanisms are involved. Ideal adsorbed solution theory (IAST) in combination with the Freundlich equation was developed to predict the adsorption capacities of binary organic compound mixtures. A new model was proposed for predicting the rate coefficient of the Wheeler-Jonas equation which is valid for breakthrough ratios up to 20%. Finally, it was shown that the Wheeler-Jonas equation can be adapted to describe the breakthrough curves of binary mixtures. New models were proposed for predicting its parameters, the adsorption rate coefficients, and the adsorption capacities for both components of the binary mixture. Thus, multivariate data analysis can not only be used to assist in the understanding of adsorption mechanisms, but also contribute to the development of predictive models of adsorption capacity and breakthrough time for single and binary organic compounds.</p>
3

PRESSURE-DRIVEN STABILIZATION OF CAPACITIVE DEIONIZATION

Caudill, Landon S. 01 January 2018 (has links)
The effects of system pressure on the performance stability of flow-through capacitive deionization (CDI) cells was investigated. Initial data showed that the highly porous carbon electrodes possessed air/oxygen in the micropores, and the increased system pressure boosts the gases solubility in saline solution and carries them out of the cell in the effluent. Upon applying a potential difference to the electrodes, capacitive-based ion adsorption occurs in competition with faradaic reactions that consume oxygen. Through the addition of backpressure, the rate of degradation decreases, allowing the cell to maintain its salt adsorption capacity (SAC) longer. The removal of oxygen from the pore space of the electrodes makes it no longer immediately accessible to faradaic reactions, thus hindering the rate of reactions and giving the competing ion adsorption an advantage that is progressively seen throughout the life of the cell. A quick calculation shows that the energy penalty to power the pump is fairly insignificant, especially in comparison to the cost of replacing the electrodes in the cell. Thus, operating at elevated pressures is shown to be cost effective for continuous operation through the reduced electrode replenishment costs.
4

Preparation, modification and characterization of activated carbon derived from Macadamia nutshells and its adsorption rate and capacity for Au(CN)2- compared to commercially prepared coconut shells

Tsolele, Refiloe 09 1900 (has links)
M. Tech (Department of Chemistry, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Activated carbons have been produced from various carbonaceous source materials including nutshells, peat, wood, coir, lignite, coal and petroleum pitch and the produced carbons have been used for adsorption of inorganic and organic compounds from numerous matrices. Activated carbons are characterized by large surface area and high degree of microporosity. The ability of activated carbon to adsorb gold from solutions, which is present in very low concentrations while loading to fairly high concentrations, has made it an attractive material for the concentration of gold from dilute solutions. Consequently, the use of activated carbons for the recovery of gold from cyanide-leached liquors has gained wide acceptance in the mining industry. However, the price of commercially prepared carbons, the time taken for them to arrive, the breakage of the carbon during transportation and the interest in utilization of various local wastes for the generation of adsorbents has led to a search of more cost effective and time friendly source for the activated carbons. The focus of this research was to conduct a study in which a comparison was conducted between untreated coconut shell derived activated carbon (CAC) and Macadamia nutshell derived activated carbon (MAC) for the adsorption of gold. These activated carbons were modified with HNO3 and H3PO4 to increase their surface adsorption properties. This was done in order to explore if these activated carbons prepared from Macadamia shells could be an attractive alternative or a complementary supplement to the coconut shell based carbons that are currently being used in the gold extraction industry. The modification of the commercially prepared Macadamia activated carbons was done with 3 different concentrations for both nitric acid and phosphoric acid. The modified activated carbons were labelled MACP20%, MACP40% and MACP60%, to signify the materials prepared from 20% (v/v) H3PO4, 40% (v/v) H3PO4 and 60% (v/v) H3PO4 , respectively . Same labelling was used for 20% (v/v) HNO3, 40% (v/v) HNO3 and 55% (v/v) HNO3 modifications to correspond to MACN20%, MACN40% and MACN55%, respectively. Also, untreated coconut shell derived activated carbon (CAC) and Macadamia nutshell derived activated carbon (MAC) were investigated for gold adsorption for comparison purposes. All the activated carbons prepared in the iii | P a g e study were characterized with Brunauer-Emmet-Teller (BET), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA), elemental analysis (EL) and X-ray diffraction spectroscopy (XRD). The physical properties of the activated carbons were done by determining attrition, ash content, volatile matter, and moisture content of all the activated carbons. Various parameters that affect selective adsorption such as the effect of initial concentration, time, agitation speed, interfering species, and dose of the adsorbent were investigated. Optimal parameters for gold ion adsorption were as follows: solution pH, 10; contact time, 6 h; agitation speed 150 rpm; sorbent amount 4 g and 5.5 ppm for initial concentration of gold. The observed selectivity order was not the same for all the adsorbents but the adsorption of gold was found to be mostly influenced by the presence of nickel and least influenced by copper. The MACP60% was found to be the most effective from the three concentrations investigated for the phosphoric acid modified activated carbons yet proved to have lower adsorption capabilities compared to CAC. The MACN55% was found to be the most efficient and displayed similar adsorption capabilities to those of CAC.

Page generated in 0.099 seconds