• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface Catalyzed Fenton Treatment of bis(2-chlorethyl) ether (BCEE), bis(2-chloroethoxy) methane (BCEM) and 1,2-dichloroethane (1,2-DCA)

Mutuc, Maria Divina Manalo 22 July 2005 (has links)
This study determined the potential feasibility of surface catalyzed Fenton treatment to remediate soil and groundwater contaminated with bis(2-chloroethyl ether (BCEE), bis(2-chloroethoxy) methane (BCEM), and 1,2-dichloroethane (1,2-DCA) among other contaminants. Parameters that affect the contaminant loss rate such as pH, hydrogen peroxide concentration and solid/water ratio were systematically evaluated. Batch reactors were set-up utilizing either contaminated or uncontaminated soil that was mixed with synthetic groundwater containing the contaminants of interest. The results show an increase in contaminant reduction with a decrease in pH, an increase in hydrogen peroxide concentration, or an increase in the solid/water ratio. For the same set of conditions, contaminant reduction was greater for systems utilizing contaminated soil as compared to the systems containing uncontaminated soil. In addition, specific oxygen uptake rates were measured for an activated sludge exposed to different dilutions of untreated and surface catalyzed Fenton treated water to evaluate whether the residual BCEE, BCEM, and 1,2 DCA as well as their oxidation by products were potentially inhibitory or can potentially serve as a substrate for the activated sludge. The measured specific oxygen uptake rates show that the surface catalyzed Fenton treatment enhanced the biodegradability of the contaminated groundwater and served as a substrate for the activated sludge. / Master of Science
2

Unravelling the chemistry behind the toxicity of oil refining effluents : from characterisation to treatment

Pinzón-Espinosa, Angela January 2018 (has links)
Adequate wastewater management is a crucial element to achieve water sustainability in the petroleum refining sector, as their operations produce vast quantities of wastewater with potentially harmful contaminants. Treatment technologies are therefore pivotal for stopping these chemicals from entering the environment and protecting receiving environments. However, refining effluents are still linked to serious pollution problems, partly because little progress has been made in determining the causative agents of the observed biological effects, resulting in non-targeted treatment. Here it is shown that naphthenic acids, which have been reported as toxic and recalcitrant, are important components of refining wastewater resulting from the processing of heavy crude oil and that they have a significant contribution to the toxic effects exerted by these effluents. Furthermore, it was found that their chemical stability makes them highly resistant to remediation using Pseudomonas putida and H2O2/Fe-TAML (TetraAmido Macrocyclic Ligands) systems under laboratory conditions, and only sequential aliquots of Fe-TAML catalysts and H2O2 showed to partially degrade naphthenic acids (50 mg/L) within 72 hours. Results suggest that a combinatorial approach of Fe-TAML/H2O2 followed by biodegradation might improve current treatment options, but further optimisation is required for the biological treatment. These results can serve as a starting point for better environmental regulations relevant to oil refining wastewater resulting from heavy crude oil, as naphthenic acids are not currently considered in the effluent guidelines for the refining sector. Furthermore, the degradation of naphthenic acids under mild conditions using Fe-TAML/H2O2 systems indicates that these catalysts hold promise for the remediation of refining wastewater in real-life scenarios.

Page generated in 0.1387 seconds