• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 63
  • 38
  • 33
  • 24
  • 22
  • 20
  • 19
  • 18
  • 18
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semantically Correct High-resolution CT Image Interpolation and its Application

Li, Jiawei 01 October 2020 (has links)
Image interpolation in the medical area is of vital importance as most 3D biomedical volume images are sampled where the distance between consecutive slices is significantly greater than the in-plane pixel size due to radiation dose or scanning time. Image interpolation creates a certain number of new slices between known slices in order to obtain an isotropic volume image. The results can be used for the higher quality of 2D and 3D visualization or reconstruction of human body structure. Semantic interpolation on the manifold has been proved to be very useful for smoothing the interpolation process. Nevertheless, all previous methods focused on low-resolution image interpolation, and most of which work poorly on high-resolution images. Besides, the medical field puts a high threshold for the quality of interpolations, as they need to be semantic and realistic enough, and resemble real data with only small errors permitted. Typically, people downsample the images into 322 and 642 for semantic interpolation, which does not meet the requirement for high-resolution in the medical field. Thus, we explore a novel way to generate semantically correct interpolations and maintain the resolution at the same time. Our method has been proved to generate realistic and high-resolution interpolations on the sizes of 5262 and 5122. Our main contribution is, first, we propose a novel network, High Resolution Interpolation Network (HRINet), aiming at producing semantically correct high-resolution CT image interpolations. Second, by combining the idea of ACAI and GANs, we propose a unique alternative supervision method by applying supervised and unsupervised training alternatively to raise the accuracy and fidelity of body structure in CT when interpolated while keeping high quality. Third, we introduce an extra Markovian discriminator as a texture or fine details regularizer to make our model generate results indistinguishable from real data. In addition, we explore other possibilities or tricks to further improve the performance of our model, including low-level feature maps mixing, and removing batch normalization layers within the autoencoder. Moreover, we compare the impacts of MSE based and perceptual based loss optimizing methods for high quality interpolation, and show the trade-off between the structural correctness and sharpness. The interpolation experiments show significant improvement on both sizes of 256 2 and 5122 images quantitatively and qualitatively. We find that interpolations produced by HRINet are sharper and more realistic compared with other existing methods such as AE and ACAI in terms of various metrics. As an application of high-resolution interpolation, we have done 2D volume projection and 3D volume reconstruction from axial view CT data and their interpolations. We show the great enhancement of applying HRINet for both in sharpness and fidelity. Specifically, for 2D volume projection, we explore orthogonal projection and weighted projection respectively so as to show the improved effectiveness for visualizing internal and external human body structure.
2

Multishot Capacity of Adversarial Networks

Shapiro, Julia Marie 08 May 2024 (has links)
Adversarial network coding studies the transmission of data over networks affected by adversarial noise. In this realm, the noise is modeled by an omniscient adversary who is restricted to corrupting a proper subset of the network edges. In 2018, Ravagnani and Kschischang established a combinatorial framework for adversarial networks. The study was recently furthered by Beemer, Kilic and Ravagnani, with particular focus on the one-shot capacity: a measure of the maximum number of symbols that can be transmitted in a single use of the network without errors. In this thesis, both bounds and capacity-achieving schemes are provided for families of adversarial networks in multiple transmission rounds. We also demonstrate scenarios where we transmit more information using a network multiple times for communication versus using the network once. Some results in this thesis are joint work with Giuseppe Cotardo (Virginia Tech), Gretchen Matthews (Virginia Tech) and Alberto Ravagnani (Eindhoven University of Technology). / Master of Science / We study how to best transfer data across a communication network even if there is adversarial interference using network coding. Network coding is used in video streaming, autonomous vehicles, 5G and NextG communications, satellite networks, and Internet of Things (IoT) devices among other applications. It is the process that encodes data before sending it and decodes it upon receipt. It brings advantages such as increased network efficiency, improved reliability, reduced redundancy, enhanced resilience, and energy savings. We seek to enhance this valuable technique by determining optimal ways in which to utilize network coding schemes. We explore scenarios in which an adversary has partial access to a network. To examine the maximum data that can be communicated over one use of a network, we require the intermediate parts of the network process the information before forwarding it in a process called network decoding. In this thesis, we focus on characterizing when using a network multiple times for communication increases the amount of information that is received regardless of the worst-case adversarial attack, building on prior work that shows how underlying structure influences capacity. We design efficient methods for specific networks, to communicate at capacity.
3

Image Transfer Between Magnetic Resonance Images and Speech Diagrams

Wang, Kang 03 December 2020 (has links)
Realtime Magnetic Resonance Imaging (MRI) is a method used for human anatomical study. MRIs give exceptionally detailed information about soft-tissue structures, such as tongues, that other current imaging techniques cannot achieve. However, the process requires special equipment and is expensive. Hence, it is not quite suitable for all patients. Speech diagrams show the side view positions of organs like the tongue, throat, and lip of a speaking or singing person. The process of making a speech diagram is like the semantic segmentation of an MRI, which focuses on the selected edge structure. Speech diagrams are easy to understand with a clear speech diagram of the tongue and inside mouth structure. However, it often requires manual annotation on the MRI machine by an expert in the field. By using machine learning methods, we achieved transferring images between MRI and speech diagrams in two directions. We first matched videos of speech diagram and tongue MRIs. Then we used various image processing methods and data augmentation methods to make the paired images easy to train. We built our network model inspired by different cross-domain image transfer methods and applied reference-based super-resolution methods—to generate high-resolution images. Thus, we can do the transferring work through our network instead of manually. Also, generated speech diagram can work as an intermediary part to be transferred to other medical images like computerized tomography (CT), since it is simpler in structure compared to an MRI. We conducted experiments using both the data from our database and other MRI video sources. We use multiple methods to do the evaluation and comparisons with several related methods show the superiority of our approach.
4

A Discrete Wavelet Transform GAN for NonHomogeneous Dehazing

Fu, Minghan January 2021 (has links)
Hazy images are often subject to color distortion, blurring and other visible quality degradation. Some existing CNN-based methods have shown great performance on removing the homogeneous haze, but they are not robust in the non-homogeneous case. The reason is twofold. Firstly, due to the complicated haze distribution, texture details are easy to get lost during the dehazing process. Secondly, since the training pairs are hard to be collected, training on limited data can easily lead to the over-fitting problem. To tackle these two issues, we introduce a novel dehazing network using the 2D discrete wavelet transform, namely DW-GAN. Specifically, we propose a two-branch network to deal with the aforementioned problems. By utilizing the wavelet transform in the DWT branch, our proposed method can retain more high-frequency information in feature maps. To prevent over-fitting, ImageNet pre-trained Res2Net is adopted in the knowledge adaptation branch. Owing to the robust feature representations of ImageNet pre-training, the generalization ability of our network is improved dramatically. Finally, a patch-based discriminator is used to reduce artifacts of the restored images. Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-art quantitatively and qualitatively. / Thesis / Master of Applied Science (MASc)
5

On Depth and Complexity of Generative Adversarial Networks / Djup och komplexitet hos generativa motstridanade nätverk

Yamazaki, Hiroyuki Vincent January 2017 (has links)
Although generative adversarial networks (GANs) have achieved state-of-the-art results in generating realistic look- ing images, they are often parameterized by neural net- works with relatively few learnable weights compared to those that are used for discriminative tasks. We argue that this is suboptimal in a generative setting where data is of- ten entangled in high dimensional space and models are ex- pected to benefit from high expressive power. Additionally, in a generative setting, a model often needs to extrapo- late missing information from low dimensional latent space when generating data samples while in a typical discrimina- tive task, the model only needs to extract lower dimensional features from high dimensional space. We evaluate different architectures for GANs with varying model capacities using shortcut connections in order to study the impacts of the capacity on training stability and sample quality. We show that while training tends to oscillate and not benefit from additional capacity of naively stacked layers, GANs are ca- pable of generating samples with higher quality, specifically for images, samples of higher visual fidelity given proper regularization and careful balancing. / Trots att Generative Adversarial Networks (GAN) har lyckats generera realistiska bilder består de än idag av neurala nätverk som är parametriserade med relativt få tränbara vikter jämfört med neurala nätverk som används för klassificering. Vi tror att en sådan modell är suboptimal vad gäller generering av högdimensionell och komplicerad data och anser att modeller med högre kapaciteter bör ge bättre estimeringar. Dessutom, i en generativ uppgift så förväntas en modell kunna extrapolera information från lägre till högre dimensioner medan i en klassificeringsuppgift så behöver modellen endast att extrahera lågdimensionell information från högdimensionell data. Vi evaluerar ett flertal GAN med varierande kapaciteter genom att använda shortcut connections för att studera hur kapaciteten påverkar träningsstabiliteten, samt kvaliteten av de genererade datapunkterna. Resultaten visar att träningen blir mindre stabil för modeller som fått högre kapaciteter genom naivt tillsatta lager men visar samtidigt att datapunkternas kvaliteter kan öka, specifikt för bilder, bilder med hög visuell fidelitet. Detta åstadkoms med hjälp utav regularisering och noggrann balansering.
6

Generative adversarial network for point cloud upsampling

Widell Delgado, Edison January 2024 (has links)
Point clouds are a widely used system for the collection and application of 3D data. But most timesthe data gathered is too scarce to reliably be used in any application. Therefore this thesis presentsa GAN based upsampling method within a patch based approach together with a GCN based featureextractor, in an attempt to enhance the density and reliability of point cloud data. Our approachis rigorously compared with existing methods to compare the performance. The thesis also makescorrelations between input sizes and how the quality of the inputs affects the upsampled result. TheGAN is also applied to real-world data to assess the viability of its current state, and to test how it isaffected by the interference that occurs in an unsupervised scenario.
7

Latent Walking Techniques for Conditioning GAN-Generated Music

Eisenbeiser, Logan Ryan 21 September 2020 (has links)
Artificial music generation is a rapidly developing field focused on the complex task of creating neural networks that can produce realistic-sounding music. Generating music is very difficult; components like long and short term structure present time complexity, which can be difficult for neural networks to capture. Additionally, the acoustics of musical features like harmonies and chords, as well as timbre and instrumentation require complex representations for a network to accurately generate them. Various techniques for both music representation and network architecture have been used in the past decade to address these challenges in music generation. The focus of this thesis extends beyond generating music to the challenge of controlling and/or conditioning that generation. Conditional generation involves an additional piece or pieces of information which are input to the generator and constrain aspects of the results. Conditioning can be used to specify a tempo for the generated song, increase the density of notes, or even change the genre. Latent walking is one of the most popular techniques in conditional image generation, but its effectiveness on music-domain generation is largely unexplored. This paper focuses on latent walking techniques for conditioning the music generation network MuseGAN and examines the impact of this conditioning on the generated music. / Master of Science / Artificial music generation is a rapidly developing field focused on the complex task of creating neural networks that can produce realistic-sounding music. Beyond simply generating music lies the challenge of controlling or conditioning that generation. Conditional generation can be used to specify a tempo for the generated song, increase the density of notes, or even change the genre. Latent walking is one of the most popular techniques in conditional image generation, but its effectiveness on music-domain generation is largely unexplored, especially for generative adversarial networks (GANs). This paper focuses on latent walking techniques for conditioning the music generation network MuseGAN and examines the impact and effectiveness of this conditioning on the generated music.
8

Accelerating Conceptual Design Analysis of Marine Vehicles through Deep Learning

Jones, Matthew Cecil 02 May 2019 (has links)
Evaluation of the flow field imparted by a marine vehicle reveals the underlying efficiency and performance. However, the relationship between precise design features and their impact on the flow field is not well characterized. The goal of this work is first, to investigate the thermally-stratified near field of a self-propelled marine vehicle to identify the significance of propulsion and hull-form design decisions, and second, to develop a functional mapping between an arbitrary vehicle design and its associated flow field to accelerate the design analysis process. The unsteady Reynolds-Averaged Navier-Stokes equations are solved to compute near-field wake profiles, showing good agreement to experimental data and providing a balance between simulation fidelity and numerical cost, given the database of cases considered. Machine learning through convolutional networks is employed to discover the relationship between vehicle geometries and their associated flow fields with two distinct deep-learning networks. The first network directly maps explicitly-specified geometric design parameters to their corresponding flow fields. The second network considers the vehicle geometries themselves as tensors of geometric volume fractions to implicitly-learn the underlying parameter space. Once trained, both networks effectively generate realistic flow fields, accelerating the design analysis from a process that takes days to one that takes a fraction of a second. The implicit-parameter network successfully learns the underlying parameter space for geometries within the scope of the training data, showing comparable performance to the explicit-parameter network. With additions to the size and variability of the training database, this network has the potential to abstractly generalize the design space for arbitrary geometric inputs, even those beyond the scope of the training data. / Doctor of Philosophy / Evaluation of the flow field of a marine vehicle reveals the underlying performance, however, the exact relationship between design features and their impact on the flow field is not well established. The goal of this work is first, to investigate the flow surrounding a self–propelled marine vehicle to identify the significance of various design decisions, and second, to develop a functional relationship between an arbitrary vehicle design and its flow field, thereby accelerating the design analysis process. Near–field wake profiles are computed through simulation, showing good agreement to experimental data. Machine learning is employed to discover the relationship between vehicle geometries and their associated flow fields with two distinct approaches. The first approach directly maps explicitly–specified geometric design parameters to their corresponding flow fields. The second approach considers the vehicle geometries themselves to implicitly–learn the underlying relationships. Once trained, both approaches generate a realistic flow field corresponding to a user–provided vehicle geometry, accelerating the design analysis from a multi–day process to one that takes a fraction of a second. The implicit–parameter approach successfully learns from the underlying geometric features, showing comparable performance to the explicit–parameter approach. With a larger and more–diverse training database, this network has the potential to abstractly learn the design space relationships for arbitrary marine vehicle geometries, even those beyond the scope of the training database.
9

Scenario Generation for Stress Testing Using Generative Adversarial Networks : Deep Learning Approach to Generate Extreme but Plausible Scenarios

Gustafsson, Jonas, Jonsson, Conrad January 2023 (has links)
Central Clearing Counterparties play a crucial role in financial markets, requiring robust risk management practices to ensure operational stability. A growing emphasis on risk analysis and stress testing from regulators has led to the need for sophisticated tools that can model extreme but plausible market scenarios. This thesis presents a method leveraging Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) to construct an independent scenario generator capable of modeling and generating return distributions for financial markets. The developed method utilizes two primary components: the WGAN-GP model and a novel scenario selection strategy. The WGAN-GP model approximates the multivariate return distribution of stocks, generating plausible return scenarios. The scenario selection strategy employs lower and upper bounds on Euclidean distance calculated from the return vector to identify, and select, extreme scenarios suitable for stress testing clearing members' portfolios. This approach enables the extraction of extreme yet plausible returns. This method was evaluated using 25 years of historical stock return data from the S&P 500. Results demonstrate that the WGAN-GP model effectively approximates the multivariate return distribution of several stocks, facilitating the generation of new plausible returns. However, the model requires extensive training to fully capture the tails of the distribution. The Euclidean distance-based scenario selection strategy shows promise in identifying extreme scenarios, with the generated scenarios demonstrating comparable portfolio impact to historical scenarios. These results suggest that the proposed method offers valuable tools for Central Clearing Counterparties to enhance their risk management. / Centrala motparter spelar en avgörande roll i dagens finansmarknad, vilket innebär att robusta riskhanteringsrutiner är nödvändiga för att säkerställa operativ stabilitet. Ökande regulatoriskt tryck för riskanalys och stresstestning från tillsynsmyndigheter har lett till behovet av avancerade verktyg som kan modellera extrema men troliga marknadsscenarier. I denna uppsats presenteras en metod som använder Wasserstein Generative Adversarial Networks med Gradient Penalty (WGAN-GP) för att skapa en oberoende scenariogenerator som kan modellera och generera avkastningsfördelningar för finansmarknader. Den framtagna metoden består av två huvudkomponenter: WGAN-GP-modellen och en scenariourvalstrategi. WGAN-GP-modellen approximerar den multivariata avkastningsfördelningen för aktier och genererar möjliga avkastningsscenarier. Urvalsstrategin för scenarier använder nedre och övre gränser för euklidiskt avstånd, beräknat från avkastningsvektorn, för att identifiera och välja extrema scenarier som kan användas för att stresstesta clearingmedlemmars portföljer. Denna strategi gör det möjligt att erhålla nya extrema men troliga avkastningar. Metoden utvärderas med 25 års historisk aktieavkastningsdata från S&P 500. Resultaten visar att WGAN-GP-modellen effektivt kan approximera den multivariata avkastningsfördelningen för flera aktier och därmed generera nya möjliga avkastningar. Modellen kan dock kräva en omfattande mängd träningscykler (epochs) för att fullt ut fånga fördelningens svansar. Scenariurvalet baserat på euklidiskt avstånd visade lovande resultat som ett urvalskriterium för extrema scenarier. De genererade scenarierna visar en jämförbar påverkan på portföljer i förhållande till de historiska scenarierna. Dessa resultat tyder på att den föreslagna metoden kan erbjuda värdefulla verktyg för centrala motparter att förbättra sin riskhantering.
10

Partial Facial Re-imaging Using Generative Adversarial Networks

Desentz, Derek 28 May 2021 (has links)
No description available.

Page generated in 0.0725 seconds