• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elektriskt Framdrivningssystem för Högpresterande Ultralätt Flygplan / Electric Propulsion for High Performance Ultralight Aircraft

Edlund, Per, Mami, Nihel January 2017 (has links)
Företaget BlackWing Sweden AB tillverkar ultralätta flygplan av kolfiberkomposit. Företaget vision är att tillverka ett flygplan som helt kan drivas av elektricitet med samma prestanda som flygplan drivet av fossila bränslen. För att kunna driva BlackWing flygplanet med hjälp av elektricitet behövs ett batteripaket, elektronikstyrning samt en elmotor. Därför har detta examensarbete ägnats åt att främst undersöka vilka elmotorer och battericeller som är mest lämpade för BlackWing flygplanet. Därefter togs resultatet fram genom beräkningar på battericeller och motorpaket med hjälp av insamlad information om motor-och batteriprestanda. För att få ett mer objektivt och systematiskt resultat här även en Pugh-matris används för att på ett enkelt sätt avgöra den mest lämpliga battericellen. Resultatet av detta arbete visade sig att i dagsläget är batteriet Envia, High Energi Pouch cell (ENV35011-CRC) och Siemens motor DYNADYN® 85 är mest lämpliga för BlackWing flygplanet. / BlackWing Sweden AB manufactures ultralight aircraft made from carbon fibre composite. The company's vision is to produce an aircraft that can be completely powered by electricity with the same performance as the aircraft powered by fossil fuels. To operate the BlackWing aircraft using electricity it will need a battery pack, electronic controls and an electric driveline. Therefore, this thesis has been devoted primarily to study which electric engine and battery cells that would be most suitable for the BlackWing aircraft. The result was produced by calculations of the battery cells and electric driveline by using collected information about driveline and battery performance. To get a more objective and systematic results, a Pugh matrix was used to easily determine the most suitable battery cell. The results of this work showed that in the current situation, the battery Envia High Energy Drone Cell Pouch (ENV35011-CRC) and Siemens engine DYNADYN® 85 are the most suitable for the BlackWing aircraft.
2

The aeroplane spin motion and an investigation into factors affecting the aeroplane spin

Hoff, Rein January 2014 (has links)
A review of aeroplane spin literature is presented, including early spin research history and lessons learned from spinning trials. Despite many years of experience in spinning evaluation, it is difficult to predict spin characteristics and problems have been encountered and several prototype aeroplanes have been lost. No currently published method will reliably predict an aeroplane’s spin recovery characteristics. Quantitative data is required to study the spin motion of the aeroplane in adequate detail. An alternative method, Vision Based State Estimation, has been used to capture the spin motion. This alternative method has produced unique illustrations of the spinning research aeroplane and data has been obtained that could possibly be very challenging to obtain using traditional methods. To investigate the aerodynamic flow of a spinning aeroplane, flights have been flown using wool tufts on wing, aft fuselage and empennage for flow visualization. To complement the tuft observations, the differential pressure between the upper and lower horizontal tail and wing surfaces have been measured at selected points. Tufts indicate that a large-scale Upper Surface Vortex forms on the outside wing. This USV has also been visualized using a smoke source. The flow structures on top of both wings, and on top of the horizontal tail surfaces, have also been studied on another aeroplane model. The development of these rotational flow effects has been related to the spin motion. It is hypothesized that the flow structure of the turbulent boundary layer on the outside upper wing surface is due to additional accelerations induced by the rotational motion of the aeroplane. The dynamic effects have been discussed and their importance for the development of the spin considered. In addition, it is suggested that another dynamic effect might exist due to the additional acceleration of the turbulent boundary layer due to the rotational motion of the aeroplane. It is recommended that future spin recovery prediction methods account for dynamic effects, in addition to aerodynamic control effectiveness and aeroplane inertia, since the spin entry phase is important for the subsequent development of the spin. Finally, suggestions for future research are given.
3

Modelling and simulation of flexible aircraft : handling qualities with active load control

Andrews, Stuart P. January 2011 (has links)
The study of the motion of manoeuvring aircraft has traditionally considered the aircraft to be rigid. This simplifying assumption has been shown to give quite accurate results for the flight dynamics of many aircraft types. As modern transport aircraft have developed however, there has been a marked increase in the size and weight of these aircraft. This trend is likely to continue with the development of future blended-wing-body and supersonic transport aircraft. This increase in size and weight has brought about a unique set of aeroelastic and handling quality issues. The aerodynamic forces and moments acting on an aeroplane have traditionally been represented using the aerodynamic derivative approach. It has been shown that this quasisteady aerodynamic model inadequately predicts the aircraft’s stability characteristics, and that the inclusion of unsteady aerodynamics “greatly improves the fidelity” of aircraft models. This thesis thus presents a novel numerical simulation of an aeroelastic aeroplane for real-time analysis. The model is built around the standard six degree-of-freedom equations of motion for a rigid aeroplane using the mean-axes system, and includes unsteady aerodynamics and structural dynamics. This is suitable for pilot-in-the-loop simulation, handling qualities and flight loads analysis, and control law development. The dynamics of the structure are modelled as a set of normal modes, and the equations of motion are realised in state-space form. The unsteady aerodynamic forces acting on the aeroplane are described by an indicial state-space model, including unsteady tailplane downwash and compressibility effects. An implementation of the model is presented in the MATLAB/ Simulink environment. The interaction between the flight control system, the aeroelastic system and the rigidbody motion of the aeroplane can result in degraded handling qualities, excessive actuator control, and fatigue problems. The introduction of load alleviation systems for the management of loads due to manoeuvres and gusts is also likely to result in the handling qualities of the aeroplane being degraded. This thesis presents a number of studies into the impact of structural dynamics, unsteady aerodynamics, and load alleviation on the handling qualities of a flexible civil transport aeroplane. The handling qualities of the aeroplane are assessed against a number of different handling qualities criteria and flying specifications, including the Neal-Smith, Bandwidth, and CAP criterion. It is shown that aeroelastic effects alter the longitudinal and lateral-directional characteristics of the aeroplane, resulting in degraded handling qualities. Manoeuvre and gust load alleviation are similarly found to degrade handling qualities, while active mode control is shown to offer the possibility of improved handling qualities.
4

Modelling and simulation of flexible aircraft : handling qualities with active load control

Andrews, Stuart P. 03 1900 (has links)
The study of the motion of manoeuvring aircraft has traditionally considered the aircraft to be rigid. This simplifying assumption has been shown to give quite accurate results for the flight dynamics of many aircraft types. As modern transport aircraft have developed however, there has been a marked increase in the size and weight of these aircraft. This trend is likely to continue with the development of future blended-wing-body and supersonic transport aircraft. This increase in size and weight has brought about a unique set of aeroelastic and handling quality issues. The aerodynamic forces and moments acting on an aeroplane have traditionally been represented using the aerodynamic derivative approach. It has been shown that this quasisteady aerodynamic model inadequately predicts the aircraft’s stability characteristics, and that the inclusion of unsteady aerodynamics “greatly improves the fidelity” of aircraft models. This thesis thus presents a novel numerical simulation of an aeroelastic aeroplane for real-time analysis. The model is built around the standard six degree-of-freedom equations of motion for a rigid aeroplane using the mean-axes system, and includes unsteady aerodynamics and structural dynamics. This is suitable for pilot-in-the-loop simulation, handling qualities and flight loads analysis, and control law development. The dynamics of the structure are modelled as a set of normal modes, and the equations of motion are realised in state-space form. The unsteady aerodynamic forces acting on the aeroplane are described by an indicial state-space model, including unsteady tailplane downwash and compressibility effects. An implementation of the model is presented in the MATLAB/ Simulink environment. The interaction between the flight control system, the aeroelastic system and the rigidbody motion of the aeroplane can result in degraded handling qualities, excessive actuator control, and fatigue problems. The introduction of load alleviation systems for the management of loads due to manoeuvres and gusts is also likely to result in the handling qualities of the aeroplane being degraded. This thesis presents a number of studies into the impact of structural dynamics, unsteady aerodynamics, and load alleviation on the handling qualities of a flexible civil transport aeroplane. The handling qualities of the aeroplane are assessed against a number of different handling qualities criteria and flying specifications, including the Neal-Smith, Bandwidth, and CAP criterion. It is shown that aeroelastic effects alter the longitudinal and lateral-directional characteristics of the aeroplane, resulting in degraded handling qualities. Manoeuvre and gust load alleviation are similarly found to degrade handling qualities, while active mode control is shown to offer the possibility of improved handling qualities.
5

Load State of an Aircraft with an Elastic Wing / Load State of an Aircraft with an Elastic Wing

Schoř, Pavel January 2018 (has links)
V této práci je navržena metoda výpočtu zatížení letadla s netuhým křídlem, založená na spojení panelové metody prvního řádu dle Katz and Plotkin, Low-Speed Aerodynamics, 2001 s metodou stukturální analýzy dle Píštěk et al., Pevnost a životnost letadel I, 1988 a Lebofsky,Numerically Generated Tangent Stiffness Matrices for Geometrically Non-Linear Struc- tures, 2013. Panelová metoda poskytuje přasná data pro výpočet zatížení křídla od vzdušných sil za předpokladu že lze dané proudění aproximovat po- mocí potenciálního proudění, Narozdíl metod založených na interakci s CFD metodami lze navrženou metodu používat i na bežném počítači.
6

Dynamic label placement for moving objects / Dynamisk etikettplacering för rörliga objekt

Hallqvist, Kristoffer January 2017 (has links)
In command and control systems, for example air traffic control, operators must view many moving objects simultaneously. Graphical labels that identify objects move along with them, and for readability it is important that such labels do not overlap or hop around erratically as objects come close to each other. Instead, the labels should smoothly revolve around their objects. The goal of this thesis is to explore label placement strategies for moving objects that avoid overlap and hopping effects. In this thesis, we consider a simplified problem, in which time is coarsely discretized and each label is of a fixed size and can only be displayed in a limited number of distinct positions relative to its corresponding object. An optimal and a reactive heuristic algorithm are developed and applied to a number of test cases, which are then analysed for different statistical measures. In a scene with 25 objects traveling across a common area, the reactive algorithm is on average able to keep approximately half of the labels visible the whole time, whereas the optimal algorithm could only be applied to test cases with at most four objects. A prediction mechanism is implemented that on average decreases the number of times labels alternate between being hidden and visible. Future work could investigate how users perceive the usability of a system implementing the reactive algorithm. / I lednings- och övervakningssystem för t.ex. flygtrafik måste operatörer hålla uppsikt på flera rörliga objekt samtidigt. För att kunna identifiera objekten visas de tillsammans med grafiska etiketter som följer dem åt, och för att det ska gå att läsa etiketterna ordentligt är det viktigt att de inte överlappar eller gör hastiga oförutsägbara rörelser när objekt närmar sig varandra. Istället bör etiketterna röra sig mjukt runt sina respektive objekt. Målet med detta arbete är att utforska strategier för att placera etiketter till rörliga objekt på ett sådant sätt att överlapp och hastiga oförutsägbara rörelser undviks. I arbetet behandlas ett förenklat problem där tiden är grovt diskretiserad och varje etikett har en förutbestämd storlek och enbart kan visas på ett begränsat antal platser i förhållande till objektet den tillhör. En optimal och en reaktiv heuristisk algoritm utvecklas och tillämpas på ett antal testfall som sedan analyseras för mätdata. I en vy med 25 objekt som färdas genom ett gemensamt område klarar den reaktiva algoritmen i genomsnitt att behålla ungefär hälften av etiketterna synliga hela tiden, medan den optimala algoritmen endast kunde tillämpas på testfall med som mest fyra objekt. En förutsägelsemekanism implementeras och lyckas i många fall förhindra att etiketterna växlar mellan att vara dolda och synliga. Framtida arbete skulle kunna utreda hur användare upplever användbarheten av en praktisk tillämpning som använder den reaktiva algoritmen.

Page generated in 0.0536 seconds