1 |
Décharge à Barrières Diélectriques à pression atmosphérique pour la charge bipolaire d’aérosol / Atmospheric pressure dielectric barrier discharge for aerosol bipolar chargingMathon, Rémi 17 December 2015 (has links)
La mesure de distribution de taille d’un aérosol (particules solides ou liquides en suspension dans un gaz) par analyse de mobilité électrique nécessite de neutraliser l’aérosol. La neutralisation consiste à conférer une distribution de charge centrée sur zéro obtenue par la diffusion sur l’aérosol d’ions bipolaires. Nous avons démontré la faisabilité d’un chargeur bipolaire post-Décharge à Barrières Diélectriques (DBD) pour remplacer les neutraliseurs radioactifs, généralement utilisées pour la production d’ions bipolaires et soumis à des contraintes législatives. La caractérisation électrique des DBD en géométrie « fil-fil » selon la distance inter-électrodes, la tension et le débit a permis demettre en évidence trois types d’auto-organisations des filaments selon la tension et d’évaluer lecourant de décharge, c’est-à-dire la production par la décharge d’espèces chargées par unité detemps. Dans la géométrie et les conditions de fonctionnement choisies, des méthodes de mesure des flux d’ions en post-décharge ont alors été développées. Nous avons ainsi confirmé que la fraction d‘ions extraits de l’espace inter-électrodes résulte d’une compétition électro-hydrodynamique qui dépend de l’auto-organisation des filaments. En effet, les densités d’ions positifs et négatifs en post-DBD, ainsi que le rapport entre ces densités, critiques pour la charge d’aérosols, sont contrôlés par les champs électriques et le temps de transit des ions en post-décharge. Dans le chargeur post-DBD, les densités d’ions sont décroissantes. Toutefois, cette décroissance n’affecte pas les distributions de charges des aérosols qui sont constantes pour chaque taille quelle que soit la concentration d’aérosol. Dans ces conditions, les granulométries mesurées en post-neutraliseurs radioactif et DBD sont comparées afin de prouver que le neutraliseur post-DBD est viable pour la granulométrie des aérosols submicroniques. / The measurement of the size distribution of an aerosol (solid or liquid particles in suspension in agas) by electrical mobility analyses requires the neutralization of the aerosol. Neutralization consistsin imparting a charge distribution with a mean charge of 0 by the diffusion of bipolar ions on aerosol.We prove the feasibility of a post- Dielectric Barrier Discharge (DBD) bipolar charger as an alternativeto radioactive neutralizer subjected to legislative constraints. The electrical characterization of awire-to-wire DBD versus the gap, the voltage and the flow-rate highlights 3 kinds of selforganizationsof filaments versus voltage. Moreover, discharge current which represents the chargedspecies production per unit of time is evaluated. In the chosen geometry and operating conditions, apost-discharge ions flux measurement method was developed. We confirm that anelectro-hydrodynamic competition controls the extraction of ions from the gap. In fact, electric fieldsand transit time control positive and negative ions densities and the ratio between them which arecritical for aerosol charging. For the post-DBD charger, ions densities decrease in the charging zone.However, this decrease does not affect the aerosol charge distribution for each particle size withconcentration. In these conditions, the post-radioactive neutralizer and post-DBD neutralizer aerosolsize measurements are compared in order to prove that the post-DBD neutralizer is available forsubmicronic aerosols sizing.
|
2 |
Développement d’un chargeur à décharge couronne pour la mesure à 10 Hz de la concentration d’un aérosol atmosphérique / Development of a corona discharge charger for 10 Hz measurements of an atmospheric aerosol concentrationHamidi, Assia 12 December 2014 (has links)
Le but est de développer un chargeur d’aérosols submicroniques à décharge couronne pour la mesure de concentration atmosphérique (10^3-10^5 cm^-3) avec un temps de réponse de 100 ms.Deux sources d’ions, pointe-Trou et fil-Fente ont été caractérisées. L’augmentation du flux d’ions extrait en post-Décharge par confinement EHD des ions tant dans l’espace inter-Électrodes que dans l’extracteur a été mis en évidence.L’étude expérimentale de deux configurations de mélange, concentrique et face-À-Face, a d’abord permis de confirmer la loi de charge des aérosols par diffusion d’ions qui dépend du diamètre des particules et du produit Ni.t, avec Ni, la densité d’ions et t, le temps de charge. L’originalité de ce chargeur repose sur l’hétérogénéité des densités d’ions unipolaires (Ni0>10^9cm^-3) requises pour compenser le temps de charge inférieur à 50 ms. Dans ces conditions hétérogènes, nous avons montré que la taille et la dynamique de charge qui en dépend, contrôlent la trajectoire de l’aérosol.Les différents chargeurs ont ensuite été comparés selon les conditions de fonctionnement, principalement en termes de charge maximale et pertes minimales. Dans le chargeur retenu (source d’ions pointe-Trou et mélange concentrique), les relations charge/mobilité et les pertes en fonction du diamètre d’aérosol ont ensuite été caractérisées. Nous avons montré la linéarité du courant de particules chargées avec la concentration qui permet l’inversion de données. Le système préliminaire de mesure comprend le chargeur, le séparateur et la mesure du courant répond aux objectifs de l’étude en termes de limite de détection en concentration (<10^3 cm^-3) et de temps de réponse (< 100 ms). Nous avons donc démontré la faisabilité d’un système de mesure de concentration d’aérosol atmosphérique à 10 Hz, a l’aide d’un chargeur à décharge couronne, sous réserve d’améliorer le pouvoir de séparation. En outre, aux vues des pertes d’aérosol négligeables et de l’abaissement de la limite de charge partielle, le chargeur développé est compatible avec d’autres applications. / The goal is to develop an aerosol charger based on a corona discharge for atmospheric concentration measurements (10^3-10^5 cm^-3) within a response time of 100 ms.Two ion sources, point-To-Hole and wire-To-Slit have been characterized. The increase of the ion flow in the post-Discharge by EHD ion confinement in both the discharge gap and the hole has been shown.At first, using an experimental survey driven in two mixing configurations, concentric and face-To-Face, we have confirmed the aerosol diffusion charging law which depends on aerosol diameter and Ni.t product, with Ni, the ions concentration and t, the charging time. Thus, the originality of this charger relies on the very high heterogeneity of unipolar ion densities (Ni0 >10^9 cm^-3) required to compensate the charging time of 50 ms. In these conditions, we have shown that aerosol diameter and the charging dynamic (which depends also on the diameter) control the aerosol trajectory.The chargers have, next, been compared in different operating conditions, mainly in terms of the maximal charging and the minimal losses. In the chosen charger (point-To-Hole ion source and concentric mixing), the relations charge/mobility and losses according to diameter have been characterized. We have also shown the linearity of the charged particles current with the aerosol concentration which allows the current-Concentration data inversionThe preliminary measurement system composed by the charger, the separator and the particle current measurements, satisfies the objectives of the study in terms of the concentration detection limit (10^3 cm^-3) and the response time (100 ms). We have thus shown the feasibility of an atmospheric aerosol concentration measurement system at 10 Hz using a corona discharge charger provided that the separation power is improved. Furthermore, knowing that aerosol losses are negligible and the lower limit of the partial charging, the developed charger is adaptable with other applications.
|
Page generated in 0.0614 seconds