• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of thermophoresis in sub-micron particle deposition

Chiou, M. C. January 1992 (has links)
No description available.
2

On the dynamics within a gas phase process for continuous carbon nanotube synthesis

Höcker, Christian January 2018 (has links)
Extrapolating the properties of individual carbon nanotubes (CNTs) into macro-scale CNT materials using a continuous and cost effective process offers enormous potential for a variety of applications. The floating catalyst chemical vapour deposition (FCCVD) method discussed in this dissertation bridges the gap between generating nano- and macro-scale CNT material and has already been adopted by industry for exploitation. A deep understanding of the phenomena that occur within the FCCVD reactor and how to control the formation of the catalyst nanoparticles is, therefore, essential to producing a desired CNT product and successfully scaling up the FCCVD process. This dissertation connects information on the decomposition of reactants, axial catalyst nanoparticle dynamics and the morphology of the resultant CNTs and demonstrates how these factors are strongly related to the temperature and chemical availability of reactants within the reactor. For the first time, in-situ measurements of catalyst particle size distributions paired with reactant decomposition profiles and detailed axial SEM studies of formed CNT materials revealed specific temperature domains that have important implications for scaling up the FCCVD process. A novel observation was that the evaporation and re-condensation of catalyst nanoparticles results in the formation, disappearance and reformation of the nanoparticles along the reactor axis. The combined influences of pyrolytic carbon species and catalytic nanoparticles are shown to influence CNT aerogel formation. This work also examines the source of carbon in the formed CNTs and the location of aerogel formation. Axial measurements using isotopically-labelled methane (C13H4) demonstrate that carbon within all CNTs is primarily derived from CH4 rather than some of the early-forming CNTs being predominantly supplied with carbon from decomposed catalytic precursor components. Quantification of CNT production along the axis of the reactor dispels the notion that injection parameters influence CNT formation and shows that bulk CNT formation occurs near the reactor exit regardless of the carbon source (CH4, toluene or ethanol). By supplying carbon to different reactor locations, it was discovered that CNT aerogel formation will occur even when carbon is delivered near the exit of the reactor provided the carbon source reaches a temperature sufficient to induce pyrolysis (>1000°C). Furthermore, experimental studies that identify a new role of sulphur (S) in the CNT formation process are discussed in this work. Analogous to effects observed in other aerosol systems containing S, in the FCCVD reactor, S lowers the nucleation barrier of the catalyst nanoparticles and enhances not only CNT growth but catalyst particle formation itself. The new concept of critical catalyst mass concentration for CNT aerogel formation was identified by implementing the novel approach of completely decoupling catalyst particle formation from CNT aerogel production. Rather than aerogel formation being dependent on a critical particle number concentration and ideal sized catalyst nanoparticles at the entrance of the reaction furnace, it was identified that the important metric is instead a minimum critical catalyst mass concentration. Application of the principle using other catalyst precursors such as cobaltocene, with continuous CNT aerogel formation from cobalt based catalyst nanoparticles being reported for the first time, and iron-based nanoparticles from a spark generator, provides proof of the new principle’s robustness and ubiquity. In addition to the experimental studies above, theoretical studies have been carried out to understand the agglomeration occurring in a CNT aerosol. The agglomeration eventually leads to a gas phase synthesized CNT aerogel at the end of the reactor, which can be collected and spun continuously. The results of this work are not only scientifically interesting, they also provide a strong foundation for further research aimed at optimizing and controlling large-scale CNT reactors by modifying downstream dynamics.
3

Development and implementation of a microresonator impactor for atmospheric particulate sensing

Zielinski, Arthur Timothy January 2018 (has links)
Recent instrument development for aerosol measurement has focussed on small-scale, on-line measurements that can be incorporated into miniaturised sensor nodes as part of ambient or personal air quality monitoring networks. As a result, optical particle counters (OPCs) have risen in popularity given their ability to consistently size and count individual particles. OPCs have limitations, however, in their inability to detect ultrafine particles (considered the most influential to human health) or to measure particle mass directly (the standard metric for air quality). The growing field of microelectromechanical systems (MEMS) offers a potential alternative by implementing microresonators as mass sensors. MEMS resonators have high mass sensitivities and have recently seen implementation as particulate matter (PM) monitors. The field of MEMS PM instruments is still limited with a variety of implemented resonator topologies and sampling mechanisms. In general, however, they offer real-time, high sensitivity measurements at low flow rates. The aim of this thesis was to further examine the viability of implementing MEMS resonators for PM measurement with a focus on practical considerations for real-world applications. To this end, a new microresonator-based impactor was developed - the MEMS Impactor Stage (MIS) - capable of accommodating various nozzle and resonator combinations. Square lateral bulk acoustic resonators were the primary topology, but the results within the thesis are widely applicable. A series of laboratory studies covered the resonator lifetime, reusability, detection limits, and response to environmental changes. The resonator displayed a high sensitivity throughout, capable of detecting ultrafine particles, but is vulnerable to misinterpretation. Beyond mass measurement, studies introduced possible extensions to hygroscopicity and compositional applications. Ambient particle measurements with the MIS, simulating a real-world application to air quality monitoring, showed the capabilities as a PM instrument while highlighting concerns to be addressed for future instrument design. A microresonator-based impactor has potential as an alternative to OPCs, but its cross sensitivity to deposition patterns and environmental effects must be accounted for prior to implementation as PM monitor.
4

Design, Evaluation, and Particle Size Characterization of an In-Duct Flat Media Particle Loading Test System for Nuclear-Grade Asme Ag-1 Hepa Filters

Wong, Matthew Christopher 06 May 2017 (has links)
The design and performance evaluation of in-duct, isokinetic samplers capable of testing flat sheet, nuclear-grade High Efficiency Particulate Air (HEPA) filters simultaneously with a radial filter testing system is discussed in this study. Evaluations within this study utilize challenge aerosols of varying particle diameters and masses such as hydrated alumina, Arizona test dust, and flame-generated acetylene soot. Accumulated mass and pressure drop for each in-duct sampler is correlated to the full-scale radial filter accumulated mass from initial to 10 in w. c. of loading. SEM imaging of samples at 25%, 50%, 75% and 100% loading verifies particle sizes with instrumentation used, revealing filter clogging resulting from particle impaction and interception. The U.S Department of Energy requires prototype nuclear-grade HEPA filters to be qualified under ASME AG-1 standards. The data obtained can be used to determine baseline performance characteristics on pleated radial filter medium for increased loading integrity and lifecycle endurance.
5

Measurement, Characterization, and Source Apportionment of the Major Chemical Components of Fine Particulate Material, Including Semi-Volatile Species

Grover, Brett D. 16 February 2006 (has links) (PDF)
The promulgation of revised standards for atmospheric fine particles (PM2.5) by the US EPA has sparked renewed interest in the ability to accurately measure and characterize suspended atmospheric particulate matter. Semi-volatile material (SVM), consisting of ammonium nitrate and semi-volatile organic material (SVOM), is not accurately measured by EPA accepted methods such as the Federal reference method (FRM) or Tapered Element Oscillating Microbalance (TEOM). However, SVM is often a major fraction of urban aerosols. Recent advances in atmospheric sampling instrumentation allowed for the semi-continuous characterization of urban PM2.5, including SVM. The Filter Dynamic Measurement System (FDMS) was shown to measure total PM2.5 mass including semi-volatile species. Validation of the FDMS was performed by comparison with the particle concentrator-Brigham Young University organic sampling system (PC-BOSS) and the real-time total ambient mass sampler (RAMS). Semi-continuous ambient particulate concentrations of sulfate, nitrate and ammonium ion were measured by a newly developed Dionex instrument which was field tested and validated for the first time in Fresno, CA. Either a modified Sunset Laboratory carbon monitor, collocated with a conventional Sunset carbon monitor employing a common inlet, or the newly developed dual-oven Sunset monitor allowed for the semi-continuous determination of both nonvolatile and semi-volatile organic material. This was the first attempt to characterize both nonvolatile and semi-volatile fractions of an urban aerosol in a semi-continuous manner using all semi-continuous instruments. A suite of instruments for semi-continuous PM2.5 monitoring was recommended including, an R&P FDMS for the measurement of PM2.5 mass, a dual-oven Sunset monitor for the measurement of nonvolatile and semi-volatile carbonaceous species, and a Dionex GP-IC for the measurement of inorganic species. A TEOM monitor is also recommended to measure nonvolatile PM2.5 mass. Using these instruments, semi-continuous mass closure was obtained for the first time during a study conducted in Riverside, CA. The advantage of using semi-continuous sampler data in the application of source apportionment was elucidated. Local aerosols are often impacted by short-term pollution episodes that cannot be temporally resolved using integrated samplers. One-h averaged data applied to source apportionment models was shown to increase the power of the model to predict sources, both primary and secondary, that exhibit diurnal short-term episodes.

Page generated in 0.0788 seconds