• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1959
  • 101
  • 20
  • 8
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 2748
  • 2748
  • 667
  • 512
  • 512
  • 319
  • 259
  • 241
  • 229
  • 202
  • 201
  • 189
  • 188
  • 160
  • 160
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

Investigation of Two-Line and Four-Line Chemiluminescence for Equivalence Ratio Mapping of Elevated Pressure Combustion

Tonarely, Michael 01 January 2022 (has links) (PDF)
Flame stabilization behavior is experimentally investigated at engine relevant conditions using an optical sensor imaging system. Optical imaging systems can provide insight into local engine behavior as opposed to measurements with devices such as flowmeters. Two facilities are utilized to examine premixed flame combustion stabilized by bluff body flame holders at both atmospheric and elevated pressures. C2* and CH* chemiluminescence signals are recorded on a four-band imaging system to calibrate the sensor intensity ratio of C2*/CH* to the flame equivalence ratio. Tracking this ratio across flame position can provide local information concerning flow disturbances and other combustor instabilities. Several fuels (methane, propane, and liquid Jet-A) are tested to examine the change in chemiluminescence ratios that can be found in industrial applications. The calibrations are obtained across a wide range of equivalence ratios (0.6-1.4) and for pressures of 1 and 5 bar. Methane flames showed very low C2* signal value in lean and stoichiometric flames, resulting in non-monotonically increasing calibration curves. Propane flames had a monotonic calibration curve, attributed to greater C2* signal intensity. The Jet-A-air flames also had non-monotonically increasing calibrations at 1 bar, but a monotonic curve at elevated pressure. These calibrations are then applied to the average C2*/CH* intensity ratio images to yield maps of flame equivalence ratio. Downstream variation in the equivalence ratio of the unconfined facility is attributed to air entrainment, while in the weaker signal is thought to be a function of the local flame properties.
642

Planar Laser-Induced Fluorescence of Formaldehyde in the Reacting Jet of a High Pressure Axially Staged Combustor

Quiroga, Jason 01 January 2021 (has links) (PDF)
Planar laser-induced fluorescence (PLIF) is a spectroscopic diagnostic method used widely in combustion research. In this study, imaging with formaldehyde as the tracer species was used in the diagnosis of jet engine performance at the UCF Propulsion and Energy Research Laboratory (PERL). PLIF imaging was first conducted on a laboratory Bunsen burner in order to validate the technique, identify the individual correction components, and demonstrate the results are consistent with other turbulent freejet formaldehyde PLIF literature. Once validated, PLIF imaging was then used to examine the concentration of formaldehyde in the reacting jet of a high pressure axially staged combustor. The results were processed to convert from recorded fluorescence to quantitative concentration profiles. This allowed for simultaneous visualization of the flame structure and the spatial distribution of formaldehyde vapor concentration in the reacting jet in crossflow for different equivalence ratios. Additionally, our concentration distributions in the instantaneous cross-sectional images showed regions of higher formaldehyde fluorescence near the preheat zone, and moderate formaldehyde fluorescence in the region preceding the preheat zone. Recommendations were made for improvements to the procedures used in this study for future work. Preliminary work was also done for the future integration of hydroxyl (OH) PLIF to be used simultaneously with formaldehyde PLIF for even more in-depth performance analysis.
643

The Effect of Bending and Twisting on a Heaving Flat Plate

Soto, Carlos 01 January 2021 (has links) (PDF)
Remotely operated aerial vehicles such as quadcopters and drones have been, and continue to be, used extensively by military personnel, industry, and civilians alike. Current research into unsteady flapping mechanisms has been primarily concerned with the heaving and pitching motion of rigid foils. The purpose of this thesis is to investigate how a dynamically morphing foil affects the fluid-structure interactions of unsteady flapping locomotion as measured by lift, drag, and vorticity. The effects of non-dimensional heaving amplitude and reduced frequency are studied using force sensor and Particle Image Velocimetry (PIV) measurements. Two reduced frequencies are tested: one in the unsteady range, κ=0.105, and one in the highly unsteady range, κ=0.209. Two morphing modes were investigated: spanwise twisting in the direction of upward pitch (Mode A), and spanwise twisting in the direction of downward pitch (Mode B). The effects of changing reduced frequency and nondimensional heaving amplitude were explored for each morphing mode. Force sensor measurements showed that Mode A recovered some of the lift that is usually lost during the upstroke of flapping locomotion. Additionally, Mode A maintained a near-constant lift coefficient during the transition between downstroke and upstroke, suggesting a more stable form of locomotion. PIV results showed that Mode A limits circulation and leading-edge vortex (LEV) growth during the downstroke, keeping Cd ≈ 0 at the cost of reduced lift. By contrast, PIV results showed that Mode B increases the circulation during the downstroke, resulting in large increases in both lift and drag coefficients. Force sensor data showed that this effect on lift is reversed during the upstroke, where Mode B causes negative lift. The effects of each morphing mode is caused by changes in shear layer velocity that occur as a result of spanwise twisting. The twisting performed by Mode A reduces the effective angle of attack, resulting in a reduced shear layer velocity and lower circulation. The twisting performed by Mode B does the exact opposite, increasing the effective angle of attack and consequently increasing the shear layer velocity and circulation.
644

Exploration of Shock-Droplet Ignition and Combustion

Patten, John 01 January 2022 (has links) (PDF)
Liquid fuels are desirable in aerospace applications due to their higher energy density when compared to gaseous fuels. With the advent of detonation-based engines, it is necessary to characterize and analyze how liquid fuel interacts with detonation waves as well as shocks to ignite. While liquid fuel sprays have been proven to successfully aid and sustain detonations, the physical mechanism by which the individual liquid droplets accomplish this is yet to be understood. Such knowledge allows for more predictable detonation properties, which in turn can let detonation-based engines be sustained more easily. This research seeks to quantify and characterize interactions of liquid fuels with detonations and shocks, analyzing the breakup mechanism as well as the ignition of select fuels. Such effects will be characterized for several different mixture compositions as well as shock and detonation speeds. Primary analysis techniques include shadowgraph, Schlieren, and chemiluminescence imaging. Data on pressure will also be taken with pressure transducers to confirm shock and detonation properties. This research will further the progress of liquid fuel detonation-based engines by enabling more predictable and sustainable detonations.
645

Development of Multi-Scale Characterization Techniques for Stress Corrosion Cracking of Aerospace Alloys

Reed, Nicholas 01 January 2021 (has links) (PDF)
Corrosion presents an inherent challenge in the safe and effective use of metallic aerospace structures for extended periods of time. Progress in the fundamental understanding of corrosion initiation and propagation under stress requires a multi-scale approach that leverages experiments to develop predictive models. Although there exists a large amount of research results tracking the corrosive processes of anodic dissolution and hydrogen embrittlement, the amount of available data and modeling of the micro-scale initiation of corrosion is sparse. This work leverages a suite of characterization techniques to systematically analyze an aerospace grade aluminum alloy AA7075-T6, providing important multi-scale data for correlation with overall corrosion progression. Samples were exposed to 3.5% NaCl solution at various exposure times under loading with a micro-tensile system. Optical microscopy, Raman spectroscopy and Energy Dispersive X-ray Analysis provided spatial maps of the visual and chemical alloy signatures before, during, and after failure, to analyze and track the progression of corrosion. An experimental setup for in-situ Digital Image Correlation (DIC) was developed to provide strain maps to study local concentrations around corrosion pits and quantify the impact on the material tensile performance. The material morphology and composition from these measurements identified localized oxide formations at a high spatial resolution that can be used to quantify the corrosion rates. Meanwhile, in-situ DIC measurements provided results showing stress concentrations formed by the corrosion pits and the reduced mechanical performance with exposure. The results demonstrate that multiple factors affect corrosion susceptibility and material deterioration, and highlight the need to overcome experimental challenges in quantifying these factors distinctly. This work demonstrates the capacity for highly detailed analysis of corrosion initiation and propagation in affected alloys using the processes outlined in the systematic study. The outcomes provide a pathway to address methods for maintaining the integrity of these alloys and extending their lifespan.
646

HIGHLY CRITICAL GRAPHICS GENERATION ON A SYSTEM-ON-CHIP PLATFORM

Andersson, Fredrik, Karlsson, Rikard January 2022 (has links)
The critical applications domain stands today at the brink of a great divide. On one side, the deterministic and safe operational prerequisite of the system. On the other, an ever increasing demand for computational power and miniaturization. In some cases, the welfare of people hinge in the balance of these attributes. It is therefore vital that these system undergo strict and rigorous development and testing. Development has evolved a great deal with regards to computational power and miniaturization. So too has the development of deterministic and safely operational systems. However the combination of these two are a complex matter. A light in the dark might be seen in the Commercial Off The Shelf System-on-Chip, which offers great computational power in relation to its volume. This thesis’s objective is to investigate potential fault-detection methods applicable on commercial System-on-Chip. To determine applicability, multiple implementations have been made and tested. Results from which suggest that fault detection methods implemented on field programmable gate array are highly effective. However, not all worst case execution time analysis conducted in this thesis are deemed a success. A common-mode analysis is conducted which indicated that functions already present on the System-on-Chip, before implementation, negated the effect of common-cause failures under scrutiny in the analysis. The majority of the data gathered from state of the art, implementations and common-mode analysis conducted, indicate that commercial off the shelf multi-processor System-on-Chip platforms have great potential in safety critical systems.
647

A DEPENDABILITY PERSPECTIVE TO MONITOR EXERCISES USING A MOBILE ECG SENSOR

Fadhil, Aya, Zawawi, Maya January 2022 (has links)
No description available.
648

High-Performance Nanocomposites Designed for Radiation Shielding in Space and an Application of GIS for Analyzing Nanopowder Dispersion in Polymer Matrixes

Auslander, Joseph Simcha 01 January 2013 (has links) (PDF)
No description available.
649

Parallel Unstructured Grid Generation for Complex Real-World Aerodynamic Simulations

Zagaris, George 01 January 2008 (has links) (PDF)
No description available.
650

Broadband Investigation of the Pyrolysis of Propane using a MIR Optical Parametric Oscillator

Greene, Robert 01 January 2022 (has links) (PDF)
The chemistry of propane continues to play a pivotal role in today's power production technologies. As reliance on natural gas expands as greener cleaner fuels are sought throughout the world, especially as countries are attempting to transition away from traditional coal and crude-oil fired plants towards solar, wind, and hydro-electric sources. Natural gas, often seen as a bridge fuel between these two competing ends, has been in the recent past and for the foreseeable future will continue to play an important role in the energy sector. Among the components of natural gas, propane plays a key role in the chemistry for both pyrolysis and combustion. While the composition of natural gas is primarily dominated by the presence of methane, the heavier hydrocarbons especially propane dominates the chemistry of reactions. Thus, developing a healthy understanding of the pyrolysis of propane will aid in deepening insights into the chemistry that dominates that of natural gas. The pyrolysis of propane was carried out behind reflected shockwaves at elevated temperatures. Species concentration histories were recorded simultaneously using a broadband mid-infrared optical parametric oscillator to probe the reacting flows. Concentration histories for methane, acetylene, ethylene, ethane, propene, and propane were collected over a range of pressures and temperatures (pressures of ~4 to 5 atm, and temperatures of 1105 to 1304 K). These species were chosen due to there prevalence in the computational and theoretical framework of the pyrolysis of propane, but have been difficult to experimentally measure due to overlapping molecular absorption spectra.

Page generated in 0.1177 seconds