• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thoracic Spinal Cord Neuromodulation Obtunds Dorsal Root Ganglion Afferent Neuronal Transduction of the Ischemic Ventricle

Salavatian, Siamak, Ardell, Sarah M., Hammer, Mathew, Gibbons, David, Armour, J. Andrew, Ardell, Jeffrey L. 01 November 2019 (has links)
Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. The study objective was to determine whether thoracic spinal dorsal column stimulation (SCS) modulates cardiac afferent sensory transduction of the ischemic ventricle. In anesthetized canines (n = 16), extracellular activity generated by 62 dorsal root ganglia (DRG) soma (T1-T3), with verified myocardial ischemic (MI) sensitivity, were evaluated with and without 20-min preemptive SCS (T1-T3 spinal level; 50 Hz, 90% motor threshold). Transient MI was induced by 1-min coronary artery occlusion (CAO) of the left anterior descending (LAD) or circumflex (LCX) artery, randomized as to sequence. LAD and LCX CAO activated cardiac-related DRG neurons (LAD: 0.15 ± 0.04-1.05 ± 0.20 Hz, P < 0.00002; LCX: 0.08 ± 0.02-1.90 ± 0.45 Hz, P < 0.0003). SCS decreased basal neuronal activity of neurons that responded to LAD (0.15 ± 0.04 to 0.02 ± 0.01 Hz, P < 0.006) and LCX (0.08 ± 0.02 to 0.02 ± 0.01 Hz, P < 0.003). SCS suppressed responsiveness to transient MI (LAD: 1.05 ± 0.20-0.03 ± 0.01 Hz; P < 0.0001; LCX: 1.90 ± 0.45-0.03 ± 0.01 Hz; P < 0.001). Suprathreshold SCS (1 Hz) did not activate DRG neurons antidromically (n = 10 animals). Ventricular fibrillation (VF) was associated with a rapid increase in DRG activity to a maximum of 4.39 ± 1.07 Hz at 20 s after VF induction and a return to 90% of baseline within 10 s thereafter. SCS obtunds the capacity of DRG ventricular neurites to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress, thereby contributing to its capacity to cardioprotect.NEW & NOTEWORTHY Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. This study determined that thoracic spinal column stimulation (SCS) obtunds the capacity of dorsal root ganglia ventricular afferent neurons to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress. This modulation does not reflect antidromic actions of SCS but likely reflects efferent-mediated changes at the myocyte-sensory neurite interface.
2

The Effects of Bifidobacterium Longum NCC3001 on AH Neuron Excitability and Slow Wave Activity of the Mouse Intestine

Khoshdel, Amir 04 1900 (has links)
<p>The small intestine holds an intrinsic ability to digest and absorb nutrients from the food we intake without intervention from the central nervous system. This ability is made possible by the population of cells that inhabit the gut, particularly interstitial cells of Cajal of the myenteric plexus and sensory primary intrinsic neurons (AH cells), which ultimately influence muscle function and motility. The AH cells are the first neurons in the hierarchy of sensory neurons in the gut and are therefore a perfect candidate to test the effects of <em>Bifidobacterium longum</em> NCC3001 supernatant since in a physiological setting the metabolites secreted by this bacterium can interact with the AH cells directly or indirectly through absorption by the mucosa.</p> <p>The probiotic <em>Bifidobacterium</em> <em>longum</em> NCC3001 has been shown to normalize anxiety-like behaviour and hippocampal brain derived neurotropic factor (BDNF) levels in mice infected with <em>Trichuris</em> <em>muris </em>in a model of infectious colitis. Utilizing a chronic model of colitis, a study was conducted to decipher whether or not the anxiolytic effects of <em>Bifidobacterium longum</em> NCC3001 involved the vagus. My specific objective in this study was to find evidence for interaction between <em>B.longum</em> NCC3001 and myenteric neurons as a potential route for <em>B.longum</em> NCC3001 to influence CNS function. We assessed a cell’s electro-responsiveness through spike discharge, which is the number of action potentials elicited in response to a supra-threshold depolarizing current injection.</p> <p>The electro-responsiveness of neurons perfused with <em>B. longum</em> NCC3001 supernatant (conditioned medium; n = 4) was significantly reduced compared to the control group (those perfused with Krebs solution; n = 5; <em>P</em> = 0.016). The electro-responsiveness of neurons perfused with the conditioned medium was also significantly lower than that of neurons perfused with unconditioned group (MRS growth medium alone) group (n = 4; <em>P</em> = 0.029). In comparing the excitabilities of the neurons in the control group with that of the control media group, there was no statistical difference (<em>P</em> = 0.29).</p> <p>In subsequent studies, the objective was to identify the AH cells and to determine the effect of <em>B. longum</em> NCC3001 conditioned medium on this population of cells. The electro-responsiveness as measured through spike discharge of AH cells perfused with the conditioned medium (n = 5) was significantly reduced compared to neurons perfused with the unconditioned medium (n = 5; <em>P</em> = 0.02). Sensory neurons perfused with the conditioned medium (n = 9) exhibited a significant reduction in their instantaneous input resistances compared to neurons perfused with the unconditioned medium (n = 8; <em>P </em>= 0.01). There was also a significant reduction in the time-dependent input resistance of neurons perfused with the conditioned medium (n = 9) compared to neurons perfused with the unconditioned medium (n = 8; <em>P </em>= 0.02). In addition, perfusion of the conditioned medium over sensory neurons (n = 9) significantly reduced the magnitude of the hyperpolarization-activated cationic current (<em>I</em><sub>h</sub>) compared to neurons perfused with the unconditioned medium (n = 8; <em>P</em> = 0.0003). Furthermore, there was also a significant reduction in the action potential half width duration of myenteric sensory neurons perfused with conditioned medium (n = 5) compared to that exhibited by neurons perfused with the unconditioned medium (n = 5; <em>P</em> = 0.008).</p> <p>In later experiments, we wanted to gain a more comprehensive understanding of the effect of this bacterium on the gut so we evaluated its effects on the gut musculature. Upon full immersion, the supernatant of <em>Bifidobacterium longum</em> NCC3001 (conditioned medium) caused an initial depolarization of the circular smooth muscle cell. This depolarization continued until the slow wave oscillations in these cells ceased and membrane potential would plateau. Several minutes after this plateau, the slow wave oscillations reappeared and the cell was significantly hyperpolarized relative to the conditions before conditioned medium was added. The resting membrane potential of circular smooth muscle cells in Krebs solution was -54.3 mV and -70.3 mV approximately two minutes after full immersion by the supernatant when the cell was hyperpolarized and a stable recorded was achieved (n = 7; <em>P</em> = 0.02). The average time of onset of depolarization was 18.6 s and the average change in membrane potential (depolarization) from onset of effect to its plateau was 14.0 mV (n = 7). Occasionally, the addition of the conditioned medium only caused an immediate but slight depolarization (n = 3) and in other cases caused only a hyperpolarization of the cell (n = 3) with no significant changes in any slow wave characteristics in either case. Furthermore, any cells that exhibited the waxing and waning of the slow wave lost this pattern upon the addition of the conditioned medium (n = 10).</p> <p>In attempts to understand the role of neurotransmission in this system, we conducted several experiments whereby carbachol (acetylcholine agonist) and L-NNA (nitric oxide synthase inhibitor) were administered to the muscle. Prior to the addition of 1μM carbachol or 2e<sup>-4 </sup>M L-NNA, we would only observe the pacemaker slow wave associated with the interstitial cells of Cajal of the myenteric plexus during the perfusion of Krebs solution. Upon the addition of carbachol (n = 3) or L-NNA (n = 4), we would observe a second slower frequency pattern appear, referred to as a waxing and waning pattern.</p> / Master of Science (MSc)
3

Neurochemical Diversity of Afferent Neurons That Transduce Sensory Signals From Dog Ventricular Myocardium

Hoover, Donald, Shepherd, Angela V., Southerland, Elizabeth M., Armour, J. Andrew, Ardell, Jeffrey L. 18 August 2008 (has links)
While much is known about the influence of ventricular afferent neurons on cardiovascular function in the dog, identification of the neurochemicals transmitting cardiac afferent signals to central neurons is lacking. Accordingly, we identified ventricular afferent neurons in canine dorsal root ganglia (DRG) and nodose ganglia by retrograde labeling after injecting horseradish peroxidase (HRP) into the anterior right and left ventricles. Primary antibodies from three host species were used in immunohistochemical experiments to simultaneously evaluate afferent somata for the presence of HRP and markers for two neurotransmitters. Only a small percentage (2%) of afferent somata were labeled with HRP. About half of the HRP-identified ventricular afferent neurons in T3 DRG also stained for substance P (SP), calcitonin gene-related peptide (CGRP), or neuronal nitric oxide synthase (nNOS), either alone or with two markers colocalized. Ventricular afferent neurons and the general population of T3 DRG neurons showed the same labeling profiles; CGRP (alone or colocalized with SP) being the most common (30-40% of ventricular afferent somata in T3 DRG). About 30% of the ventricular afferent neurons in T2 DRG displayed CGRP immunoreactivity and binding of the putative nociceptive marker IB4. Ventricular afferent neurons of the nodose ganglia were distinct from those in the DRG by having smaller size and lacking immunoreactivity for SP, CGRP, and nNOS. These findings suggest that ventricular sensory information is transferred to the central nervous system by relatively small populations of vagal and spinal afferent neurons and that spinal afferents use a variety of neurotransmitters.

Page generated in 0.0798 seconds