Spelling suggestions: "subject:"afferent""
11 |
Telencephalic Projections to the Goldfish Hypothalamus: An Anterograde Degeneration StudyAirhart, Mark J., Shirk, James O., Kriebel, Richard M. 01 January 1988 (has links)
In this study, large areas of goldfish telencephalon were ablated including rostral nucleus preopticus periventriculare (rNPP), and degenerating axons were traced by a modified Fink and Heimer procedure. The lesioning procedure ablated large regions of area dorsalis telencephali pars medialis, centralis, and dorsolateral complex; and completely removed area ventralis telencephali pars dorsalis, ventralis, and lateralis. In addition, the supracommissural nucleus and rNPP were lesioned specifically because both nuclei have been thought to be involved in courtship behavior and endocrine control of reproduction. This investigation demonstrated extensive fiber projections from telencephalic nuclei and/or rNPP to the hypothalamus. Lesioned telencephalon and/or rNPP projected bilaterally to nucleus preopticus and the suprachiasmatic nucleus and unilaterally to the following tuberal nuclei: nucleus anterior tuberis, and the lateral hypothalamic nucleus. A much larger fiber projection to the inferior lobe nuclei was also observed with a large contralateral as well as ipsilateral input.
|
12 |
UNDERSTANDING THE PATHOPHYSIOLOGY OF MIGRAINE: ACTIVATION AND SENSITIZATION OF DURAL AFFERENTSYan, Jin January 2011 (has links)
Migraine is one of the most common neurological disorders. The pathological conditions that initiate and sensitize afferent pain signaling are poorly understood. The goal of this study is to identify the ion channels and signaling proteins underlying activation and sensitization of meningeal nociceptors.In trigeminal neurons retrogradely labeled from the cranial meninges, approximately 80% responded to a pH 6.0 application with a rapidly activating and desensitizing ASIC-like current. Pharmacological experiments and kinetics analysis demonstrated that dural afferent pH-sensitive currents were mediated via activation of ASIC3. In addition, applications of decreased pH solutions were able to excite these neurons and generate action potentials. In awake animals, application of decreased pH solutions to the dura produced dose-dependent facial and hindpaw allodynia, which was also mediated through activation of ASIC3. Accumulating evidence indicates that meningeal inflammation induced sensitization of dural afferents contributes to migraine headache. We have demonstrated here that in the presence of mast cell mediators, dural afferents showed a decreased pH threshold and increased activity in response to pH stimuli both in vivo and in vitro. These data provide a cellular mechanism by which decreased pH in the meninges directly excites afferent pain-sensing neurons potentially contributing to migraine headache. It also indicates that inflammatory events within the meninges could sensitize afferent pain signaling and result in increased sensitivity of dural afferents.Intracranial Interleukin-6 (IL-6) levels have been shown to be elevated during migraine attacks, suggesting that this cytokine may facilitate pain signaling from the meninges. Here we reported that in awake animals, direct application of IL-6 to the dura produced dose-dependent facial and hindpaw allodynia via activation of the ERK signaling pathway. IL-6 application was also able to increase neuronal excitability in a manner consistent with phosphorylation of Nav1.7. These data provide a cellular mechanism by which IL-6 in the meninges causes sensitization of dural afferents therefore contributing to the pathogenesis of migraine.These findings are discussed in relation to how activation and sensitization of primary afferent neurons might initiate migraine pain signaling and how the research included in this dissertation relates to the development of new therapeutic strategies for migraine.
|
13 |
Somatosensory system; touch : Physiology and Neuronal Correlates of Discriminative and Affective TouchDahlquist, Clara January 2014 (has links)
This essay is about the somatosensory system, which is divided into different kinds of touch. Described briefly are the proprioceptive touch, which is transported to the brain via A-alfa fibers and transmits information about e. g. limb position and movement. The cutaneous touch is the main focus and it is divided into discriminative touch and affective touch. The first corresponds to stimuli such as vibration and pressure and is transported via A-beta axons. The second, affective touch, corresponds to e.g. painful and pleasant stimuli which are transported to the brain via A-delta and C-fibers. The aim of the essay is to give an overview of the sense of touch, by doing a literature search, including a discussion of relevant neuronal correlates focusing particularly on affective touch. Moreover, the physiological aspects of touch will be presented. The sources that are used are review and original articles taken from databases such as ScienceDirect, and some articles send by the author. Some books have also been used to find more general knowledge. The conclusion for the essay is that touch is important for humans to function in everyday life. Additional, a specific receptor called C- tactile (CT) is identified to correspond to gentle touch and is suggested to have a vital role for humans in maintaining and forming social bounds. Moreover, discriminative touch is associated with activation in the primary and secondary somatosensory cortex, whereas affective touch seems to be associated with activity in the orbitofrontal cortex, cingulate cortex and the insula cortex, as well as the prefrontal cortex, which is suggested to be activated during interpersonal touch. Further, the sense touch needs to be more researched in order to understand its functions and benefits deeper.
|
14 |
Axonal Guidance of Adenosine Deaminase Immunoreactive Primary Afferent Fibers in Developing Mouse Spinal CordAirhart, M. J., Roberts, M. A., Knudsen, T. B., Skalko, R. G. 01 January 1990 (has links)
This study examined the precision of central fiber growth in a subpopulation of dorsal root ganglion neurons in developing mouse spinal cord. Immunohistochemical techniques using a monospecific, polyclonal antiserum to mouse adenosine deaminase (ADA) were utilized to label a population of primary sensory afferents that have been found to exclusively innervate laminae I and II of the dorsal horn in adult mice. Initial growth of ADA-immunoreactive (ADA-IR) primary afferents occurred very early in development, embryonic day 10 (E10), a time coincident with the earliest settling time of dorsal root ganglion neurons. Adenosine deaminase immunoreactive primary afferents were observed throughout the cross-sectional area of the primordial dorsal funiculus (DF) as early as E10. Immunostained fibers remained quiescent in the DF during its growth and separation into the tract of Lissauer and dorsal column pathway. By E15, the two pathways had formed and ADA-IR fibers were observed exclusively in the tract of Lissauer. This segregation of fibers remained throughout development and reflected the adult pattern. Growth was reinitiated at E16 when the fibers advanced into the dorsal horn and proceeded directly to laminae I and II mimicking their adult distribution. Exuberant fiber growth was not detected throughout their development. These results strongly suggest that ADA-IR fibers exhibit precise fiber guidance to a preferred pathway, the tract of Lissauer, and accurate laminar innervation of the dorsal horn.
|
15 |
Endogenous Tachykinins Cause Bradycardia by Stimulating Cholinergic Neurons in the Isolated Guinea Pig HeartChang, Yingzi, Hoover, Donald B., Hancock, John C. 01 January 2000 (has links)
The purpose of this study was to determine if endogenous tachykinins can cause bradycardia in the isolated perfused guinea pig heart through stimulation of cholinergic neurons. Capsaicin was used to stimulate release of tachykinins and calcitonin gene-related peptide (CGRP) from cardiac afferents. A bolus injection of 100 nmol capsaicin increased heart rate by 26 ± 7% from a baseline of 257 ± 14 beats/min (n = 6, P < 0.01). This positive chronotropic response was converted to a minor bradycardic effect in hearts with 1 μM CGRP (8-37) present to block CGRP receptors. The negative chronotropic response to capsaicin was markedly potentiated in another group of hearts with the further addition of 0.5 μM neostigmine to inhibit cholinesterases. In this group, capsaicin decreased heart rate by 30 ± 10% from a baseline of 214 ± 6 beats/min (n = 8, P < 0.05). This large bradycardic response to capsaicin was inhibited by 1) infusion of neurokinin A to desensitize tachykinin receptors or 2) treatment with 1 μM atropine to block muscarinic receptors. The latter observations implicate tachykinins and acetylcholine, respectively, as mediators of the bradycardia. These findings support the hypothesis that endogenous tachykinins could mediate axon reflexes to stimulate cholinergic neurons of the intrinsic cardiac ganglia.
|
16 |
Regional Localization and Abundance of Calcitonin Gene-Related Peptide Receptors in Guinea Pig HeartChang, Yingzi, Stover, Sharon R., Hoover, Donald B. 01 January 2001 (has links)
Calcitonin gene-related peptide (CGRP) is a neurotransmitter that is released within the heart during myocardial ischemia. The present study was done to determine the regional localization and abundance of CGRP receptors in the guinea pig heart. CGRP binding sites in 20 μm frozen sections of heart were labeled using [125I]CGRP. Non-specific binding was determined in the presence of 1 μM unlabeled CGRP or CGRP8-37. Significant amounts of specific CGRP binding were identified in atrial and ventricular myocardium, all portions of the conducting system, coronary arteries, the aorta and pulmonary trunk and intracardiac ganglia. Specific binding of CGRP to the left atrium was two-fold higher than binding to the right atrium (0.667±0.052 v 0.340 ± 0.029 fmol/mg tissue, n = 5, CGRPs8-37 group). In contrast to the atria, a lower and uniform density of CGRP receptors occurred in contractile tissue of the ventricular myocardium (e.g. 0.239 ± 0.013 fmol/mg left ventricle, n = 5). The highest concentration of CGRP receptors in guinea pig cardiac tissue occurred at the bundle of His and the bundle branches (0.752 ± 0.087 and 0.71.3 ± 0.138 fmol/mg tissue, respectively, n = 5). CGRP receptors were localized to coronary vessels throughout the heart and to the ascending aorta and pulmonary trunk. Lastly, intracardiac ganglia exhibited moderate levels of specific [125I]CGRP binding (0.475 ± 0.043 fmol/mg, n = 5). These findings support the concept that CGRP can have direct effects on atrial and ventricular function as well as coronary flow. The high density of CGRP receptors in the distal conducting system and the presence of CGRP receptors in intracardiac ganglia further suggest that CGRP could have important effects on cardiac conduction velocity and parasympathetic regulation of the heart.
|
17 |
Cervical Vagus Nerve Stimulation Augments Spontaneous Discharge in Second-and Higher-Order Sensory Neurons in the Rat Nucleus of the Solitary TractBeaumont, Eric, Campbell, Regenia P., Andresen, Michael C., Scofield, Stephanie, Singh, Krishna, Libbus, Imad, Kenknight, Bruce H., Snyder, Logan, Cantrell, Nathan 11 August 2017 (has links)
Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insen-sitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts. NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents but indirectly activated a subpopulation of second- and higher-order neurons, suggesting that afferent mechanisms and central neuron activation may be responsible for vagus nerve stimulation efficacy.
|
18 |
Potential mismatches in structural and functional organization in the gracile nucleusNiranjan, Shalini S. 18 December 2008 (has links)
No description available.
|
19 |
Analysis of Stretch Reflex Responses in Mice Lacking Munc18-1 in ProprioceptorsMohi, Amr January 2017 (has links)
No description available.
|
20 |
Activation of the central nervous system by circulating Glucagon-Like Peptide-1Klustaitis, Kori M. 30 July 2009 (has links)
No description available.
|
Page generated in 0.0547 seconds