• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 18
  • 14
  • 13
  • 11
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Model-based co-design of sensing and control systems for turbo-charged, EGR-utilizing spark-ignited engines

Xu Zhang (9976460) 01 March 2021 (has links)
<div>Stoichiometric air-fuel ratio (AFR) and air/EGR flow control are essential control problems in today’s advanced spark-ignited (SI) engines to enable effective application of the three-way-catalyst (TWC) and generation of required torque. External exhaust gas recirculation (EGR) can be used in SI engines to help mitigate knock, reduce enrichment and improve efficiency[1 ]. However, the introduction of the EGR system increases the complexity of stoichiometric engine-out lambda and torque management, particularly for high BMEP commercial vehicle applications. This thesis develops advanced frameworks for sensing and control architecture designs to enable robust air handling system management, stoichiometric cylinder air-fuel ratio (AFR) control and three-way-catalyst emission control.</div><div><br></div><div><div>The first work in this thesis derives a physically-based, control-oriented model for turbocharged SI engines utilizing cooled EGR and flexible VVA systems. The model includes the impacts of modulation to any combination of 11 actuators, including the throttle valve, bypass valve, fuel injection rate, waste-gate, high-pressure (HP) EGR, low-pressure (LP) EGR, number of firing cylinders, intake and exhaust valve opening and closing timings. A new cylinder-out gas composition estimation method, based on the inputs’ information of cylinder charge flow, injected fuel amount, residual gas mass and intake gas compositions, is proposed in this model. This method can be implemented in the control-oriented model as a critical input for estimating the exhaust manifold gas compositions. A new flow-based turbine-out pressure modeling strategy is also proposed in this thesis as a necessary input to estimate the LP EGR flow rate. Incorporated with these two sub-models, the control-oriented model is capable to capture the dynamics of pressure, temperature and gas compositions in manifolds and the cylinder. Thirteen physical parameters, including intake, boost and exhaust manifolds’ pressures, temperatures, unburnt and burnt mass fractions as well as the turbocharger speed, are defined as state variables. The outputs such as flow rates and AFR are modeled as functions of selected states and inputs. The control-oriented model is validated with a high fidelity SI engine GT-Power model for different operating conditions. The novelty in this physical modeling work includes the development and incorporation of the cylinder-out gas composition estimation method and the turbine-out pressure model in the control-oriented model.</div></div><div><br></div><div><div>The second part of the work outlines a novel sensor selection and observer design algorithm for linear time-invariant systems with both process and measurement noise based on <i>H</i>2 optimization to optimize the tradeoff between the observer error and the number of required sensors. The optimization problem is relaxed to a sequence of convex optimization problems that minimize the cost function consisting of the <i>H</i>2 norm of the observer error and the weighted <i>l</i>1 norm of the observer gain. An LMI formulation allows for efficient solution via semi-definite programing. The approach is applied here, for the first time, to a turbo-charged spark-ignited (SI) engine using exhaust gas recirculation to determine the optimal sensor sets for real-time intake manifold burnt gas mass fraction estimation. Simulation with the candidate estimator embedded in a high fidelity engine GT-Power model demonstrates that the optimal sensor sets selected using this algorithm have the best <i>H</i>2 estimation performance. Sensor redundancy is also analyzed based on the algorithm results. This algorithm is applicable for any type of modern internal combustion engines to reduce system design time and experimental efforts typically required for selecting optimal sensor sets.</div></div><div><br></div><div><div>The third study develops a model-based sensor selection and controller design framework for robust control of air-fuel-ratio (AFR), air flow and EGR flow for turbocharged stoichiometric engines using low pressure EGR, waste-gate turbo-charging, intake throttling and variable valve timing. Model uncertainties, disturbances, transport delays, sensor and actuator characteristics are considered in this framework. Based on the required control performance and candidate sensor sets, the framework synthesizes an H1 feedback controller and evaluates the viability of the candidate sensor set through analysis of the structured</div><div>singular value μ of the closed-loop system in the frequency domain. The framework can also be used to understand if relaxing the controller performance requirements enables the use of a simpler (less costly) sensor set. The sensor selection and controller co-design approach is applied here, for the first time, to turbo-charged engines using exhaust gas circulation. High fidelity GT-Power simulations are used to validate the approach. The novelty of the work in this part can be summarized as follows: (1) A novel control strategy is proposed for the stoichiometric SI engines using low pressure EGR to simultaneously satisfy both the AFR and air/EGR-path control performance requirements; (2) A parametrical method to simultaneously select the sensors and design the controller is first proposed for the internal combustion engines.</div></div><div><br></div><div><div>In the fourth part of the work, a novel two-loop estimation and control strategy is proposed to reduce the emission of the three-way-catalyst (TWC). In the outer loop, an FOS estimator consisting of a TWC model and an extended Kalman-filter is used to estimate the current TWC fractional oxygen state (FOS) and a robust controller is used to control the TWC FOS by manipulating the desired engine λ. The outer loop estimator and controller are combined with an existing inner loop controller. The inner loop controller controls the engine λ based on the desired λ value and the control inaccuracies are considered and compensated by the outer loop robust controller. This control strategy achieves good emission reduction performance and has advantages over the constant λ control strategy and the conventional two-loop switch-type control strategy.</div></div>
32

Modelling and analysis of conversion efficiency in flow-through catalysts for lean-burn combustion engines

Ruiz Lucas, María José 09 June 2023 (has links)
[ES] La preocupación mundial por el cambio climático y la calidad del aire se refleja en normativas para la regulación de emisiones en el sector del transporte cada vez más estrictas, situando el desarrollo de sistemas propulsivos sostenibles como el objetivo fundamental. En el caso de los motores de combustión interna, el uso de sistemas de postratamiento de gases de escape, necesario para cumplir con los límites impuestos a las emisiones contaminantes, ha añadido mayor complejidad a la línea de escape. Una correcta comprensión de la respuesta de estos sistemas y su interacción con el motor requiere un profundo conocimiento de los procesos termo-fluidodinámicos y químicos que tienen lugar en los mismos. Su estudio indica que las mayores contribuciones a la reducción de las emisiones consisten en conseguir una activación más rápida de los catalizadores. Sin embargo, por lo general, las estrategias empleadas para alcanzar este fin se traducen en una penalización del consumo de combustible y, por consiguiente, de las emisiones de CO2. En este contexto, el objetivo de esta tesis doctoral es contribuir a la comprensión de los fenómenos presentes en los reactores monolíticos de flujo continuo utilizados en los motores de combustión pobre. En primer lugar, se presenta el desarrollo de una herramienta computacional para el modelado de los reactores estándar, es decir, los monolitos con recubrimiento catalítico monocapa, con un coste computacional bajo que permite responder de manera oportuna a las nuevas condiciones de contorno. El modelo se construyó dentro del entorno de modelo de motor virtual VEMOD, un software de dinámica de gases desarrollado por el I.U.I. CMT-Motores Térmicos para la simulación termo-fluidodinámica de motores de combustión interna y sus componentes. Apoyada sobre experimentos específicos para su calibración y validación en catalizadores de oxidación y de reducción de NOx, la herramienta computacional permite la identificación y el estudio de los parámetros que determinan la eficiencia de conversión de los sistemas de postratamiento. De esta forma, se aplica, con un enfoque de cálculo de valor medio, al análisis, en primer lugar, del impacto de la meso-geometría y el material de catalizadores de oxidación en condiciones dinámicas en función de la forma del canal. También se aborda el estudio de la sensibilidad a la composición de los gases de escape considerando diversas estrategias de combustión comparadas con el diésel convencional, así como el empleo de combustibles alternativos. Por último, se explora experimentalmente la importancia de la ubicación en la línea de escape de un catalizador de oxidación para discutir el efecto sobre las emisiones y el rendimiento del motor de la ubicación pre-turbina, por los beneficios que a nivel térmico tiene esta localización para el postratamiento. Todo ello sirve como fuente de desarrollos tecnológicos y científicos en el área de control de emisiones para el uso y comprensión de la nueva generación de sistemas de postratamiento. / [CA] La preocupació mundial pel canvi climàtic i la qualitat de l'aire es reflecteix en normatives per a la regulació d'emissions en el sector del transport cada vegada més estrictes, situant el desenvolupament de sistemes propulsius sostenibles com l'objectiu fonamental. En el cas dels motors de combustió interna, l'ús de sistemes de posttractament de gasos de fuita, necessari per a complir amb els límits imposats a les emissions contaminants, ha afegit major complexitat a la línia de fuita. Una correcta comprensió de la resposta d'aquests sistemes i la seua interacció amb el motor requereix un profund coneixement dels processos termo-fluidodinámicos i químics que tenen lloc en aquests. El seu estudi indica que les majors contribucions a la reducció de les emissions consisteix a aconseguir una activació més ràpida dels catalitzadors. No obstant això, en general, les estratègies emprades per a aconseguir aquest objectiu es tradueixen en una penalització del consum de combustible i, per consegüent, de les emissions de CO2. En aquest context, l'objectiu d'aquesta tesi doctoral és contribuir a la comprensió dels fenòmens presents en els reactors monolítics de flux continu utilitzats en els motors de combustió pobra. En primer lloc, es presenta el desenvolupament d'una eina computacional per al modelatge dels reactors estàndard, és a dir, els monòlits amb recobriment catalític monocapa, amb un cost computacional baix que permet respondre de manera oportuna a les noves condicions de contorn. El model es va construir dins de l'entorn de model de motor virtual VEMOD, un programari de dinàmica de gasos desenvolupat per l'I.U.I. CMT-Motors Tèrmics per a la simulació termo-fluidodinámica de motors de combustió interna i els seus components. Recolzada sobre experiments específics per al seu calibratge i validació en catalitzadors d'oxidació i de reducció de NOx, l'eina computacional permet la identificació l'estudi dels paràmetres que determinen l'eficiència de conversió dels sistemes de posttractament. D'aquesta manera, s'aplica, amb un enfocament de càlcul de valor mitjà, a l'anàlisi, en primer lloc, de l'impacte de la meso-geometria i el material de catalitzadors d'oxidació en condicions dinàmiques en funció de la forma del canal. També s'aborda l'estudi de la sensibilitat a la composició dels gasos de fuita considerant diverses estratègies de combustió comparades amb el dièsel convencional, així com l'ús de combustibles alternatius. Finalment, s'explora experimentalment la importància de la ubicació en la línia de fuita d'un catalitzador d'oxidació per a discutir l'efecte sobre les emissions i el rendiment del motor de la ubicació pre-turbina, pels beneficis que a nivell tèrmic té aquesta localització per al posttractament. Tot això serveix com a font de desenvolupaments tecnològics i científics en l'àrea de control d'emissions per a l'ús i comprensió de la nova generació de sistemes de posttractament. / [EN] The global concern on climate change and air quality is reflected over increasingly strict emission regulations in the transportation sector, making the development of sustainable propulsion systems the key objective. In the case of internal combustion engines, the use of aftertreatment systems (ATS), necessary to comply with the limits imposed on pollutant emissions, has added further complexity to the exhaust line. A correct comprehension of the response of these systems and their interaction with the engine requires an in-depth knowledge of the thermo-fluid-dynamic and chemical processes taking place inside them. Their study indicates that the major contributions to emission reduction rely on driving the catalysts to a faster light-off. However, in general, the strategies employed to achieve this goal involve a fuel consumption penalty and, consequently, CO2 emissions increase. In this context, the aim of this Ph.D. thesis is to contribute to the understanding of the phenomena present in flow-through catalysts used in lean burn combustion engines. First, the development of a computational tool for modelling the standard devices, i.e. mono-layers washcoat catalysts, is presented, with flexible and low computational cost, enabling timely response to the new boundary conditions. The model was built inside the Virtual Engine Model VEMOD, an open-source gas dynamics software developed by I.U.I. CMT-Motores Térmicos for thermo-fluid-dynamic simulation of internal combustion engines and their components. Supported by specific experiments for its calibration and validation on oxidation and NOx reduction catalysts, the computational tool allows the identification and study of the parameters that determine the conversion efficiency of the ATS. In the first instance it is used to analyze the impact of meso-geometry and oxidation catalyst material under dynamic conditions as a function of the channel shape. The study of the sensitivity to exhaust gas composition is also addressed considering various combustion strategies compared to conventional diesel, as well as the use of alternative fuels. Finally, the importance of the position in the exhaust line of an oxidation catalyst is explored experimentally to discuss the effect on emissions and engine performance of the pre-turbine location, because of the thermal benefits of this location for the aftertreatment. All of this serves as a source of technological and scientific developments in the area of emissions control for the use and comprehension of the new generation of aftertreatment systems. / Ruiz Lucas, MJ. (2023). Modelling and analysis of conversion efficiency in flow-through catalysts for lean-burn combustion engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/194012

Page generated in 0.2091 seconds