1 |
Agent-Based Collaborative Design of Sheet Metal PartsDing, Yuqing 06 1900 (has links)
The key objectives of this research were to develop an integrated design and
analysis methodology for sheet-metal product development based on agent-based technology, feature-based design, optimization and finite element analysis techniques, and to study the performance of prototype systems developed based on such a methodology. To achieve the research objectives, an agent-based framework was proposed for integrating and coordinating activities of participants involved in sheet-metal product
development based on the investigation of the industrial requirements and the procedures of the development of sheet-metal products. Prototype systems were developed based on the proposed framework to answer research problems outlined for the design and implementation of agent-based systems, such as agent encapsulation, system architecture, agent communication and agent coordination. The performance of such prototype
systems demonstrates that communication and coordination among domain agents can facilitate product development and reduce product cost.
An agent-based optimization approach based on an "A-Teams" approach
(Talukdar et al, 1996) was proposed for process optimization in the tooling design stage to combine the utilization of the traditional optimization techniques used to solve sheet-metal forming problems and agent-based approaches. Three test cases were used of varying complexity from a rectangular cup to the NUMISHEET'99 automobile front door panel simulation benchmark for the determination of optimal drawbead restraining forces and blankholder forces when designing draw dies for stamped parts. A network of
software agents, each implementing a different numerical optimization technique, was used in combination with metal forming simulation software to optimize process variables. It was found that the performance of each agent (and optimization technique) depended strongly on the complexity of the problem. For a given amount of computational effort, a network of collaborating agents using different optimization techniques always outperformed agents using a single technique in terms of both the best
solution found and the variance of the collection of best solutions. To provide guidance for the design and implementation of real applications, static and dynamic attributes and metrics of such agent-based collaborative systems, which can be evaluated in the preliminary system design stage and the system implementation stage, were proposed to study the impact of system architectures and coordination strategies on system performance. In addition, real-time system performance was statistically studied based on the data collected by the visualiser agent generated with the agent building toolkit. The results of case studies for system performance evaluation demonstrate the applicability of evaluation strategies proposed and can be used as a reference model for performance and scalability analysis on agent-based sheet-metal product development systems. The proposed evaluation strategies are applicable to general applications for product development by taking into consideration other performance indicators. / Thesis / Doctor of Philosophy (PhD)
|
2 |
An agent framework to support sensor networks’ setup and adaptationde Freitas, Edison Pignaton, Heimfarth, Tales, Ferreira, Armando Morado, Wagner, Flávio Rech, Pereira, Carlos Eduardo, Larsson, Tony January 2009 (has links)
Sensor networks are being used in several emerging applications not even imagined some years ago due to advances in sensing, computing, and communication techniques. However, these advances also pose various challenges that must be faced. One important challenge is related to the autonomous capability needed to setup and adapt the networks, which decentralizes the control of the network, saving communication and energy resources. Middleware technology helps in addressing this kind of problem, but there is still a need for additional solutions, particularly considering dynamic changes in users' requirements and operation conditions. This paper presents an agent-based framework acting as an integral part of a middleware to support autonomous setup and adaptation of sensor networks. It adds interoperability among heterogeneous nodes in the network, by means of autonomous behavior and reasoning. These features also address the needs for system setup and adaptations in the network, reducing the communication overhead and decentralizing the decision making mechanism. Additionally, preliminary results are also presented.
|
Page generated in 0.1165 seconds