• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Full-depth Reclamation on Strength and Durability of Pavement Base Layers

Griggs, Benjamin Earl 24 March 2009 (has links) (PDF)
The purpose of this research was to determine the effect of full-depth reclamation (FDR) on the strength and durability of aggregate base layers in a coordinated approach involving both field and laboratory testing. Field comparisons between the pre-reclamation neat base and post-reclamation blended base were supplemented with laboratory experiments conducted to determine the effects of reclaimed asphalt pavement (RAP) content, compaction effort, and heating on the strength and durability of roadways reconstructed using FDR with a portable asphalt recycling machine (PARM). Also, the effect of reclamation on the spatial uniformity of the pavement structures was explored by comparing variability in the pre- and post-reclamation material properties. Test sites in Orem, Utah; San Marcos, Texas; and South Jordan, Utah, were selected for this research. The results of field testing indicate that the FDR process significantly increased the stiffness and/or strength of the base material at two of the test locations and did not significantly change the third base material. An evaluation of spatial variability indicated that the FDR process produced equivalent or lower spatial variability with respect to both base modulus and California bearing ratio (CBR) values at one site, while the other two sites exhibited equivalent or higher spatial variability after FDR. The results of laboratory testing for all three locations indicate that specimens compacted using the modified Proctor method exhibit significantly higher CBR values and dry densities than specimens compacted using the standard Proctor method. Also, the CBR values for specimens tested in the dry condition were significantly higher than those obtained from specimens tested at optimum moisture content. These results demonstrate the value of achieving a high level of compaction during construction and preventing water ingress into the pavement over time. The blended material exhibited a significantly lower CBR value than that of the neat material at only one location; the addition of RAP to materials at the other locations did not significantly change the CBR values of those materials. In the tube suction test (TST), most of the specimens were classified as marginally or highly moisture-susceptible, and the effect of RAP on the dielectric value in the TST was of no practical importance. The use of PARMs in the FDR process is an acceptable, economical, and environmentally friendly approach to reconstruction of flexible pavements. To ensure satisfactory performance of FDR projects, engineers and managers should carefully follow recommended guidelines for project selection, pavement testing, material characterization, design, construction, and quality assurance testing.
2

Use of the Clegg Impact Soil Tester to Access Rutting Susceptiblity of Cement-Treated Base Material Under Early Trafficking

Reese, Garth B. 02 May 2007 (has links) (PDF)
In order to avoid the occurrence of early-age damage, cement-treated base (CTB) materials must be allowed to cure for a period of time before the pavement can be opened to traffic. Trafficking of a CTB before sufficient strength gain has occurred can lead to marring or rutting of the treated layer. The specific objectives of this research were to examine the correlation between Clegg impact values (CIVs) determined using a heavy Clegg impact soil tester and rut depths measured in newly constructed CTB and subsequently establish a threshold CIV at which rutting should not occur.The experimental work included field testing at several locations along United States Highway 91 near Smithfield, Utah, and laboratory testing at the Brigham Young University (BYU) Highway Materials Laboratory. In both the field and laboratory test programs, ruts were created in CTB layers using a specially manufactured heavy wheeled rutting device (HWRD). In the field, ruts caused by repeated passes of a standard pickup and a water truck were also evaluated. The collected data were analyzed using regression to identify a threshold CIV above which the CTB should not be susceptible to unacceptable rutting. From the collected data, one may conclude that successive wheel passes each cause less incremental rutting than previous passes and that CTB similar to the material tested in this research should experience only negligible rutting at CIVs greater than about 35. The maximum rut depth measured in either field or laboratory rutting tests was less than 0.35 in. in this research, probably due to the high quality limestone base material utilized to construct the CTB. In identifying a recommended threshold CIV at which CTB layers may be opened to early trafficking, researchers proposed a maximum tolerable rut depth of 0.10 in. for this project, which corresponds to a CIV of approximately 25. Because a CIV of 25 is associated with an acceptably minimal rut depth even after 100 passes of the HWRD, is achievable within a reasonable amount of time under normal curing conditions, and is consistent with earlier research, this threshold is recommended as the minimum average value that must be attained by a given CTB construction section before it can be opened to early trafficking. Use of the proposed threshold CIV should then ensure satisfactory performance of the CTB under even heavy construction traffic to the extent that the material properties do not differ greatly from those of the CTB evaluated in this research.

Page generated in 0.0818 seconds