• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigation of the Air Release in Hydraulic Reservoirs

Longhitano, Marco, Protase, Alessandro, Murrenhoff, Hubertus 28 April 2016 (has links) (PDF)
Air contamination strongly decreases the efficiency of fluid power systems and when the allowable limits are exceeded, the performance of the system deteriorates. The hydraulic reservoir performs the function of releasing the entrained air of the hydraulic system to the surroundings. In recent years, the reservoir design has become an important task in the design of the hydraulic system due to space restrictions forcing the use of small sized reservoirs. Despite this fact, experimental results on an air release are not available. In this paper, an experimental investigation of the air release in hydraulic reservoirs is presented. A test apparatus using an optical method as well as the post-processing of the results is described. These are given in terms of an air release rate for different reservoir designs over a wide range of oil flow rates and air loads. The current study is a significant step forward in the design of fluid power systems, as it provides an experimental procedure to measure the air release in the hydraulic reservoir as well as its quantitative analysis.
2

Experimental Investigation of the Air Release in Hydraulic Reservoirs

Longhitano, Marco, Protase, Alessandro, Murrenhoff, Hubertus January 2016 (has links)
Air contamination strongly decreases the efficiency of fluid power systems and when the allowable limits are exceeded, the performance of the system deteriorates. The hydraulic reservoir performs the function of releasing the entrained air of the hydraulic system to the surroundings. In recent years, the reservoir design has become an important task in the design of the hydraulic system due to space restrictions forcing the use of small sized reservoirs. Despite this fact, experimental results on an air release are not available. In this paper, an experimental investigation of the air release in hydraulic reservoirs is presented. A test apparatus using an optical method as well as the post-processing of the results is described. These are given in terms of an air release rate for different reservoir designs over a wide range of oil flow rates and air loads. The current study is a significant step forward in the design of fluid power systems, as it provides an experimental procedure to measure the air release in the hydraulic reservoir as well as its quantitative analysis.

Page generated in 0.0358 seconds