1 |
The Plant Vascular System: Structure, Function, and Responses to Environmental StressHuggett, Brett Andrew 08 June 2015 (has links)
Environmental stressors such as nutrient deficiency and insect infestation can significantly impact tree health. Despite much research on the ecological effect on forests in the northeastern United States due to calcium depletion and hemlock woolly adelgid infestation, little is known regarding the physiological mechanisms altered by these stress factors. I tested the hypothesis that calcium depletion, associated with sugar maple decline, compromises water transport processes as a result of calcium-related reductions in cell growth and stabilization. A survey of forest-grown sugar maples from a long-term replicated calcium-manipulation study showed no significant impact of calcium deficiency on wood density, stem hydraulic conductivity (Ks), or vulnerability to cavitation (VC). In vitro removal of xylem-bound calcium showed no impact on VC or air seeding thresholds (Pt). Results suggest that sugar maple decline is not caused by compromises in xylem function due to calcium deficiency. I also tested the hypothesis that hemlock woolly adelgid (Adelges tsugae Annand) (HWA) infestations impact water transport processes and nutrient partitioning in eastern hemlock trees. HWA infestation resulted in higher Ks due to an increase in average tracheid lumen area associated with the proliferation of false rings. HWA-infested trees exhibited higher rates of net photosynthesis and significant changes in foliar nutrient partitioning. These results are the first to demonstrate increases in Ks and alterations in foliar cation levels in response to HWA infestation. In two additional studies, I investigated methods for evaluating the structure and function of xylem networks. Using sequential sectioning of aerial roots of epiphytic aroids, I directly quantified the topographic relation of vessels in a single organ with measurements of vessel length, diameter, vessel end overlap length, and vessel stelar orientation. In a separate study, I explored the relationship between vessel length and measurements of Pt. In establishing guidelines for estimating whole-stem cavitation with the use of single vessel air injection, I demonstrate that calculations of Pt are influenced by stem length measured and removal of native emboli prior to testing. Improvements in tools to quantify xylem structure and function will enhance our ability to understand the responses of forest trees to environmental stress.
|
2 |
MASS FLOW SENSOR DEVELOPMENT FOR AN AIR SEEDING CART2011 October 1900 (has links)
The air seeding cart is an important piece of farming equipment used in the seeding process. Three factors which are necessary to monitor during the seeding process are the seeding rate (material mass flow rate), air flow rate, and blockages. In current practice, there are systems that monitor and report air flow and blockages but not the actual seeding rate. Presently, the seeding rate is based on the metering calibration before the seeding process starts, which requires a lot of time and energy from the operator. If that goes wrong, it not only takes longer, but also costs more money and increases the already significant stress and fatigue which farmers and operators have during the seeding period. Therefore, the development of reliable, and easily calibrated, on-line sensors for flow monitoring would be beneficial. Further, such sensors would facilitate closed-loop control of the flow rate itself.
In order to develop a laboratory prototype for mass flow measurement, a model for mass flow estimation was established. This was accomplished by using pressure transducers to determine the pressure drop across an elevation in the primary air cart run (between the air seeding cart and the air hoe drill). An air seeding test station was designed and developed for the study.
Three different types of seeds and a granular fertilizer were chosen and tested. These tested materials were canola, wheat, chickpea and urea fertilizer (46-0-0). The general form of the model was developed using data from the canola tests. The input parameters for this mass flow estimation model were pressure drop and air flow information. The average percent error of the material mass flow rate’s full range was under 10%, except for the highest rate which tested up to 20%. Overall, more than 75% of the estimations had percent errors being less than 5%. The form of the model was also applicable to other individual tested materials with the percent error of their full ranges up to 20%. However, their average of their median error was around 5% of their full ranges.
The general model was also applied to the combined data from all tested materials. The results were not as accurate as when the model was applied to the individual tested material. The median of the percent error (of material mass flow rate full range) varied from as low as 1% to as high as 30%, depending on the tested materials. Nevertheless, it demonstrated that there were consistencies between the behaviour of the four tested materials.
|
Page generated in 0.0503 seconds