Spelling suggestions: "subject:"airwater interfaces"" "subject:"airlwater interfaces""
1 |
An Investigation of Chemical Landscapes in Aqueous Electrosprays by Tracking Oligomerization of IsopreneGallo Junior, Adair 12 1900 (has links)
Electrospray ionization mass spectrometry (ESIMS) is widely used to characterize
neutral and ionic species in solvents. Typically, electrical, thermal, and pneumatic
potentials are applied to create electrosprays from which charged ionic species are ejected
for downstream analysis by mass spectrometry. Most recently, ESIMS has been exploited
to investigate ambient proton transfer reactions at air-water interfaces in real time. We
assessed the validity of these experiments via complementary laboratory experiments.
Specifically, we characterized the products of two reaction scenarios via ESIMS and
proton nuclear magnetic resonance (1H-NMR): (i) emulsions of pH-adjusted water and
isoprene (C5H8) that were mechanically agitated, and (ii) electrosprays of pH-adjusted
water that were collided with gas-phase isoprene. Our experiments unambiguously
demonstrate that, while isoprene does not oligomerize in emulsions, it does undergo
protonation and oligomerization in electrosprays, both with and without pH-adjusted
water, confirming that C-C bonds form along myriad high-energy pathways during
electrospray ionization. We also compared our experimental results with some quantum
mechanics simulations of isoprene molecules interacting with hydronium at different
hydration levels (gas versus liquid phase). In agreement with our experiments, the kinetic
barriers to protonation and oligomerization of isoprene were inaccessible under ambient
conditions. Rather, the gas-phase chemistries during electrospray ionization drove the
oligomerization of isoprene. Therefore, we consider that ESIMS could induce artifacts in
interfacial reactions. These findings warrant a reassessment of previous reports on
tracking chemistries under ambient conditions at liquid-vapor interfaces via ESIMS.
Further, we took some high-speed images of electrosprays where it was possible to
observe the main characteristics of the phenomena, i.e. Taylor cone, charge separation,
and Coulomb fission. Finally, we took the freedom to speculate on possible mechanisms
that take place during electrospray ionization that affected our system and possibly may
influence other common analytical techniques on ESIMS.
|
2 |
Effects of Aqueous Organic Coatings on the Interfacial Transport of Atmospheric SpeciesReeser, Dorea Irma 14 January 2014 (has links)
Species must interact with air—aqueous interfaces in order to transport between either phase, however organic coated water surfaces are ubiquitous in the environment, and the physical and chemical processes that occur at organic coated aqueous surfaces are often different than those at pure air—water interfaces. Three studies were performed investigating the transport of species across air—aqueous interfaces with organic coatings in an effort to gain further insight into these processes. Gas and solution phase absorption spectroscopy were used to study the effect of octanol coatings on the formation of molecular iodine (I2) by the heterogeneous ozonation of iodide and its partitioning between phases. Compared to uncoated solutions, the presence of octanol monolayers had a minor effect on the total amount of I2 produced, however, it did significantly enhance the gas to solution partitioning of I2. Incoherent broadband cavity-enhanced absorption spectroscopy (IBBC-EAS) was used to measure the gas-phase nitrogen dioxide (NO2) evolved via photolysis of aqueous nitrate solutions either uncoated or containing octanol, octanoic acid and stearic acid monolayers. Both octanol and stearic acid reduced the rate of gaseous NO2 evolution, and octanol also decreased the steady-state amount of gaseous NO2. Alternatively, octanoic acid enhanced the rate of gaseous NO2 evolution. Finally, the loss of aqueous carbon dioxide (CO2) from aqueous solutions saturated with CO2 was measured using a CO2 electrode in the absence and presence of stearic acid monolayers and octanol coatings, and a greenhouse gas analyzer was used to measure the evolution of gaseous CO2 from solutios with octanol monolayers. Enhanced losses of aqueous and evolved gaseous CO2 were observed with organic coated solutions compared to those uncoated. The results of these studies suggest that organic coatings influence the transport of I2, NO2 and CO2 via one, or a combination of: barrier effects, surface tension effects, chemistry effects and aqueous – surface – gas partitioning effects. These results, particularly the enhanced partitioning of these species to octanol coated aqueous surfaces, have important implications for species transport at air—aqueous interfaces, and may provide useful insight for future studies and parameters for atmospheric models of these species.
|
3 |
Effects of Aqueous Organic Coatings on the Interfacial Transport of Atmospheric SpeciesReeser, Dorea Irma 14 January 2014 (has links)
Species must interact with air—aqueous interfaces in order to transport between either phase, however organic coated water surfaces are ubiquitous in the environment, and the physical and chemical processes that occur at organic coated aqueous surfaces are often different than those at pure air—water interfaces. Three studies were performed investigating the transport of species across air—aqueous interfaces with organic coatings in an effort to gain further insight into these processes. Gas and solution phase absorption spectroscopy were used to study the effect of octanol coatings on the formation of molecular iodine (I2) by the heterogeneous ozonation of iodide and its partitioning between phases. Compared to uncoated solutions, the presence of octanol monolayers had a minor effect on the total amount of I2 produced, however, it did significantly enhance the gas to solution partitioning of I2. Incoherent broadband cavity-enhanced absorption spectroscopy (IBBC-EAS) was used to measure the gas-phase nitrogen dioxide (NO2) evolved via photolysis of aqueous nitrate solutions either uncoated or containing octanol, octanoic acid and stearic acid monolayers. Both octanol and stearic acid reduced the rate of gaseous NO2 evolution, and octanol also decreased the steady-state amount of gaseous NO2. Alternatively, octanoic acid enhanced the rate of gaseous NO2 evolution. Finally, the loss of aqueous carbon dioxide (CO2) from aqueous solutions saturated with CO2 was measured using a CO2 electrode in the absence and presence of stearic acid monolayers and octanol coatings, and a greenhouse gas analyzer was used to measure the evolution of gaseous CO2 from solutios with octanol monolayers. Enhanced losses of aqueous and evolved gaseous CO2 were observed with organic coated solutions compared to those uncoated. The results of these studies suggest that organic coatings influence the transport of I2, NO2 and CO2 via one, or a combination of: barrier effects, surface tension effects, chemistry effects and aqueous – surface – gas partitioning effects. These results, particularly the enhanced partitioning of these species to octanol coated aqueous surfaces, have important implications for species transport at air—aqueous interfaces, and may provide useful insight for future studies and parameters for atmospheric models of these species.
|
Page generated in 0.0709 seconds