• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Feed-Forward Air-Fuel Ratio Control during Transient Operation of an Alternative Fueled Engine

Garcia, Andrew Michael 09 August 2013 (has links)
No description available.
2

Studies on SI engine simulation and air/fuel ratio control systems design

Bai, Yang January 2013 (has links)
More stringent Euro 6 and LEV III emission standards will immediately begin execution on 2014 and 2015 respectively. Accurate air/fuel ratio control can effectively reduce vehicle emission. The simulation of engine dynamic system is a very powerful method for developing and analysing engine and engine controller. Currently, most engine air/fuel ratio control used look-up table combined with proportional and integral (PI) control and this is not robust to system uncertainty and time varying effects. This thesis first develops a simulation package for a port injection spark-ignition engine and this package include engine dynamics, vehicle dynamics as well as driving cycle selection module. The simulations results are very close to the data obtained from laboratory experiments. New controllers have been proposed to control air/fuel ratio in spark ignition engines to maximize the fuel economy while minimizing exhaust emissions. The PID control and fuzzy control methods have been combined into a fuzzy PID control and the effectiveness of this new controller has been demonstrated by simulation tests. A new neural network based predictive control is then designed for further performance improvements. It is based on the combination of inverse control and predictive control methods. The network is trained offline in which the control output is modified to compensate control errors. The simulation evaluations have shown that the new neural controller can greatly improve control air/fuel ratio performance. The test also revealed that the improved AFR control performance can effectively restrict engine harmful emissions into atmosphere, these reduce emissions are important to satisfy more stringent emission standards.

Page generated in 0.0684 seconds