• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 29
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 39
  • 32
  • 20
  • 19
  • 14
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The lateral-directional characteristics of a 74-degree delta wing employing gothic planform vortex flaps

Grantz, Arthur C. January 1984 (has links)
An investigation to determine the low-speed lateral-directional characteristics of a generic 74-degree delta wing-body configuration employing the latest generation, gothic planform vortex flaps has been conducted. In addition, the theoretical estimates from VORSTAB were compared against experimental data to aid in documenting this new method. VORSTAB is an extension of the Quasi-Vortex-Lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral-directional aerodynamic characteristics. The experimental results indicated that leading-edge deflections of 30 and 40 degrees significantly reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. Asymmetric leading edge deflections are shown to be inferior to conventional ailerons in generating rolling moments. Asymmetric leading-edge deflections are effective in producing side force at moderate to high angles of attack. VORSTAB lateral-directional calculations provide ballpark estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects at high angles of attack and should not be used for this angle of attack region. The empirical formulae for predicting vortex burst effects are not reliable in their present form. Although the basic trends are correct, the magnitude of the predicted vortex burst effect is typically over-estimated. / Master of Science
32

Structural efficiency study of composite wing rib structures

Swanson, Gary D. 29 April 2010 (has links)
A series of short stiffened panel designs which may be applied to a preliminary design assessment of an aircraft wing rib is presented. The computer program PASCO is used as the primary design and analysis tool to assess the structural efficiency and geometry of a tailored corrugated panel, a corrugated panel with a continuous laminate, a hat stiffened panel, a blade stiffened panel, and an unstiffened nat plate. To correct some of the shortcomings in the PASCO analysis when shear is present a two-step iterative process using the computer program VICON is used. The loadings considered include combinations of axial compression, shear, and lateral pressure. The loading ranges considered are broad enough such that the designs presented may be applied to other stiffened panel applications. An assessment is made of laminate variations, increased spacing. and non-optimum geometric variations, including a beaded panel. on the design of the panels. / Master of Science
33

Integral aerodynamic-structural-control wing design

Rais-Rohani, Masoud 14 October 2005 (has links)
The aerodynamic-structural-control design of a simplified wing and a forward-swept composite wing are studied. In the first example, the wing is modeled as a beam with a control surface near the wing tip. The torsional stiffness is the only physical property varying along the span. The aerodynamic model is based on strip theory, and the control model is based on output feed-back control. With the structural-control interaction being the main focus, two different approaches are taken for the simplified wing design: (1) a sequential approach, (2) an integrated approach. In each approach the wing is designed for minimum weight subject to divergence and control deflection constraints. The results of this study indicated that while the integrated approach produced a better design than the sequential approach, the difference was minimal. In the second example, a forward-swept composite wing is designed for a high subsonic transport aircraft. The structural analysis is based on finite-element method. The aerodynamic calculations are based on vortex-lattice method, and the control calculations are based on output feed-back control. The wing is designed for minimum weight subject to structural, aerodynamic/performance and control constraints. Efficient methods are used to calculate the control deflection and efficiency sensitivities which appear as second order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls, (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary. / Ph. D.
34

System reliability optimization of aircraft wings

Yang, Ju-Sung January 1989 (has links)
System reliability based design of aircraft wings is studied. A wing of a light commuter aircraft designed according to the FAA regulations is compared with one designed by system reliability optimization. Both the level III, and the advanced first order, second moment (AFOSM) method are employed to evaluate the probability of failure of each failure element of the system representing the wing. In the level III method the statistical correlation between failure modes is neglected. The AFOSM method allows to evaluate the sensitivity derivatives of the system safety index analytically. Furthermore, it accounts for the statistical correlation between failure modes. The results demonstrate the potential of stochastic optimization, and the importance of accounting for the statistical correlation between failure modes. Finally, it is shown that the problem associated with discontinuity of sensitivity derivatives, encountered when using second order Ditlevsen upper bounds to estimate the system failure probability, is circumvented if a penalty function method is used for optimization. / Ph. D.
35

NONLINEAR AERODYNAMICS OF CONICAL DELTA WINGS.

SRITHARAN, SIVAGURU SORNALINGAM. January 1982 (has links)
Steady, inviscid, supersonic flow past conical wings is studied within the context of irrotational, nonlinear theory. An efficient numerical method is developed to calculate cones of arbitrary section at incidence. The method is fully conservative and implements a body conforming mesh generator. The conical potential is assumed to have its best linear variation inside each cell; a secondary interlocking cell system is used to establish the flux balance required to conserve mass. In regions of supersonic cross flow, the discretization scheme is desymmetrized by adding the appropriate artificial viscosity in conservation form. The algorithm is nearly an order of magnitude faster than present Euler methods. It predicts known results as long as the flow Mach numbers normal to the shock waves are near 1; qualitative features, such as nodal point lift-off, are also predicted correctly. Results for circular and thin elliptic cones are shown to compare very well with calculations using Euler equations. This algorithm is then implemented in the design of conical wings to be free from shock waves terminating embedded supersonic zones adjacent to the body. This is accomplished by generating a smooth cross-flow sonic surface by using a fictitious gas law that makes the governing equation elliptic inside the cross-flow sonic surface. The shape of the wing required to provide this shock-free flow, if such a flow is consistent with the sonic surface data, is found by solving the Cauchy problem inside the sonic surface using the data on this surface and, of course, the correct gas law. This design procedure is then demonstrated using the simple case of a circular cone at angle of attack.
36

Structural optimization and its interaction with aerodynamic optimization for a high speed civil transport wing

Huang, Ximing 24 October 2005 (has links)
A variable-complexity design strategy with combined aerodynamic and structural optimization procedures is presented for the high speed civil transport design (HSCT). Variable-complexity analysis methods are used to reduce the computational expense. A finite element-model based structural optimization procedure with flexible loads is implemented to evaluate the wing bending material weight. Static aeroelastic effects, evaluated through the comparison of rigid and flexible wing models, are found to be small in the HSCT design. The results of structural optimization are compared with two quasi-empirical weight equations. Good correlation is obtained between the structural optimization and one of the weight equations. Based on this comparison, an interlacing procedure is developed to combine both the simple weight equations and structural optimization in the HSCT design optimization, at modest computational cost. HSCT designs based on the interlacing procedure reveal that the aerodynamic optimizer may take advantage of weaknesses in weight equation. However, the optimizer may be unable to escape the local minimum due to the noisy of aerodynamic response and the lack of derivative information for the interlacing procedure. / Ph. D.
37

Computational methods for non-planar vortex wake flow fields with applications to conventional and rotating wings

Stremel, Paul Michael January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1982. / Microfiche copy available in Archives and Barker. / Includes bibliographical references. / by Paul Michael Stremel. / M.S.
38

A study of the lift-to-drag ratio capability of caret wing waveriders.

Solomon, Marshall David January 1977 (has links)
Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Includes bibliographical references. / M.S.
39

Development and analysis of elastically tailored composite star shaped beam sections

Kim, Inn B. 01 December 2003 (has links)
No description available.
40

Jet noise of high aspect-ratio rectangular nozzles with application to pneumatic high-lift devices

Munro, Scott Edward 12 1900 (has links)
No description available.

Page generated in 0.1042 seconds