• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation Of The Biodegradability And Toxicity Of Pca And Mpca

Rueda, Juan 01 January 2013 (has links)
The main types of hypergolic propellants used at Kennedy Space Center (KSC) are hydrazine (HZ) and monomethylhydrazine (MMH). HZ and MMH are classified as hazardous materials and they are also known to be potentially carcinogenic to humans; therefore, handling these substances and their waste is strictly regulated. The wastes streams from HZ and MMH have been estimated to be the main hazardous wastes streams at KSC. Currently at KSC these wastes are first neutralized using citric acid and then they are transported on public roads for incineration as hazardous materials. A new method using alpha ketoglutaric acid (AKGA) was proposed to treat HZ and MMH wastes. From the reaction of AKGA with HZ and MMH two stable products are formed, 1,4,5,6-tetrahydro-6-oxo-3-pyridazinecarboxylic acid (PCA) and lmethyl-1,4,5,6-tetrahydro-6-oxo-3-pyridazinecarboxylic acid (mPCA), respectively. The cost of purchasing AKGA is greater than the cost of purchasing citric acid; thus, AKGA can only become a cost effective alternative for the treatment of HZ and MMH wastes if the products of the reactions (PCA and mPCA) can be safely disposed of into the sewage system without affecting the treatment efficiency and effluent quality of the wastewater treatment plant (WWTP). In this research mPCA and PCA were analyzed for acute toxicity using fish and crustaceans as well as their effect on the wastewater treatment efficiency and viability using AS microbes, and their biodegradability by AS organisms. Acute toxicity on fish and crustaceans was investigated according to the methods for acute toxicity by USEPA (USEPA Method EPA- 821-R-02-012) using Ceriodaphnia dubia (96 hours) and Pimephales promelas (96 hours) as the test organisms. The effect of mPCA and PCA in the treatment efficiency and viability were iii estimated from respiration inhibition tests (USEPA Method OCSPP 850.3300) and heterotrophic plate counts (HPCs). Lastly, the biodegradability of mPCA and PCA was assessed using the Closed Bottle Test (USEPA Method OPPTS 835.3110). For mPCA, the 96 hours LC50 for C. dubia was estimated at 0.77 ± 0.06 g/L (with a 95% confidence level) and the NOEC was estimated at 0.5 g/L. For P. promelas, the LC50 was above 1.5 g/L but it was noticed that mPCA had an effect on their behavior. Abnormal behavior observed included loss of equilibrium and curved spine. The NOEC on the fish was estimated at 0.75 g/L. PCA did not exhibit a significant mortality on fish or crustaceans. The LC50 of PCA in P. promelas and C. dubia was > 1.5 g/L and the NOEC was 1.5 g/L for both organisms. An Inhibitory effect on the heterotrophic respiration of activated sludge organisms was not observed after exposing them for 180-min to PCA and mPCA at concentrations of up to 1.5 g/L compared to the blank controls. Overall the impact of PCA and mPCA on total respiration rates was small, and only observed at 1,500 mg/L if at all. The difference was apparently caused by inhibition of nitrification rather than heterotrophic inhibition. However due to the variability observed in the measurements of the replicates, it is not possible to firmly conclude that PCA or mPCA at 1,500 mg/L was inhibitory to nitrification. Based on the results from the HPCs, mPCA and PCA did not affect the viability of heterotrophic organisms at 750 mg/L. In the BOD-like closed bottle test using a diluted activated sludge mixed liquor sample, the AS microorganisms were capable of biodegrading up to 67% of a 2 mg/L concentration of PCA (with respect to its theoretical oxygen demand, or ThOD) in 28 days. No biodegradation was observed in the samples containing 2 and 5 mg/L of mPCA after 28 days of incubation using a diluted activated sludge mixed liquor sample as inoculum. iv The results of this study show that mPCA is more toxic than PCA to Ceriodaphnia dubia and Pimephales promelas. However neither mPCA nor PCA had an effect on the heterotrophic respiration of an AS mixed liquor sample at 1.5 g/L and there was probably no significant inhibition of the nitrification respiration. Samples of PCA and mPCA at 2 and 5 mg/L could not be completely degraded (with respect to their total theoretical oxygen demand) by dilute AS biomass during a 28 day incubation period. mPCA did not show significant degradation in the two different biodegradation tests performed.

Page generated in 0.0374 seconds