1 |
Modeling and Characterization of Friction Stir Fabricated Coatings on Al6061 and Al5083 SubstratesGray, David T. 15 January 2010 (has links)
We have created a three-dimensional, implicit finite difference model that can accurately calculate temperatures within the bulk of a sample during a friction stir fabrication process. The model was written in Wolfram Mathematica® 7 for Students, and allows for time-efficient calculation of thermal profiles. The non-dimensionality of the model allows for accurate refinement of the temporospatial mesh, and provides portability across material types. The model provides insight as to the mechanism of heat generation by qualifying the fraction of mechanical energy converted to thermal energy for different material types and sample geometries. Finally, our model gives an understanding of the effects of the heat transfer at the boundaries of the workpiece and suggests a backside heat loss localized at the center of the tool due to a decrease in thermal contact resistance.
We have explored the effects of processing parameters on the performance of the friction stir fabrication process. The process has four stages; tool insertion, warm-up, bead formation, and steady-state translation. The tool insertion phase is characterized by a rapid increase in system horsepower requirements. During the warm-up phase, the mechanical energy of the rotating tip is converted to thermal energy. Once enough thermal energy has been transferred to the workpiece, the volume between the tip and the workpiece is filled by feedstock material. Finally, the tool is translated under relatively steady-state conditions. The success or failure of the process is dependent on adequate material delivery to the system. The horsepower requirements of the process depend on the material type and the rate of material delivery.
We have explored the effect of processing parameters on the microstructure of the processed samples. Optical microscopy shows that the stratification of layers within the weld and the depth of the weld are both dependent on the processing parameters. EBSD analysis coupled with Vicker's microhardness measurements of the processed pieces show that the grain size within the weld nugget is constant over the range of processing parameters available to the system. Data also show that pressure and heat inherent in friction stir processing of strain-hardened Al5083 counteract strengthening of the temper of the alloy. / Ph. D.
|
2 |
Crystal plasticity modeling to capture microstructural variations in cold-sprayed materialsWilliams, Aulora Gail 13 December 2024 (has links) (PDF)
The high-velocity impact of powder particles in cold-spray additively manufactured (CSAM) parts creates intersplat boundaries with regions of high dislocation densities and sub-grain structures. Upon microstructure and mechanical characterization, CSAM Aluminum 6061 showed non-uniformity, with spatial variation in the microstructure and mechanical properties affecting the overall response of the additively manufactured parts. Post-processing treatments are conducted in as-printed samples to improve particle bonding, relieve residual stresses, and improve mechanical properties. In this work, we attempt to implement the effects of grain size and distribution of smaller grains along the intersplat boundaries using the grain size distribution function and powder size information to accurately predict the deformation response of cold-sprayed material using a mean-field viscoplastic self-consistent (VPSC) model. The incorporation of an intersplat boundary term in the VPSC model resulted in a stress–strain response closely matching the experimental findings, preventing the superficially high stresses observed due to Hall–Petch effects from ultrafine- grain structures. Likewise, the results from the grain analysis showed the combined effects of grain size, orientation, and intersplat mechanisms that captured the stresses experienced and strain accommodated by individual grains.
|
3 |
Transient liquid phase (TLP) bonding as reaction–controlled diffusionAtieh, A.M., Cooke, Kavian O., Epstein, M. 12 September 2022 (has links)
No / The transient liquid phase bonding process has long been dealt with as a pure diffusion process at the joint
interface, that is, as a mass phenomenon. In spite of the advances in the application of this technique to bond
complex engineering alloys, the available models have failed to incorporate the effect of surface phenomena
on the joining process. In this work, a new reaction–controlled diffusion formulation model is proposed, and
the observation of experimental results of joining Al6061 alloy using thin single (50, 100 micron) and double
Cu foils is recorded. This work directly unveils the unique role played by surface reaction–controlled diffusion
rather than purely mass diffusion bonding process. Our experimental and modeling results reveal a conceptually
new understanding that may well explain the joint formation in TLP bonding process.
|
Page generated in 0.0205 seconds