• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Increased Efficiency: Formulary Drug Conversion Automation Using Visual Basic-Based Macros with Attachmate Reflections in the Pharmacy Setting

Naville, Chad A. 22 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Health care automation provides opportunities for health care agencies to save time, save money, and increase patient safety. The Department of Veterans Affairs medical centers use a program, Attachmate Reflections, for pharmacy medication order verification. This program is a command line interface that allows the use of macros, or programmed automated routines, that have the ability to automate repetitive tasks. Through the use of macro programming at the VISN 11 VA medical centers, this author was able to automate converting patients from Combivent MDI inhalers to its successor Combivent Respimat inhalers due to the MDI inhaler being withdrawn from the market. Usage of the macro resulted in a time savings of 649.1 hours, cost savings of $32,748.36, and increased patient safety by providing consistent medication instructions, correct dispense quantities, correct prescription day supply, and correct number of refills remaining on the prescription.
22

Prediction of the mechanical behaviour of crystalline solids

Shariare, Mohammad H., Leusen, Frank J.J., de Matas, Marcel, York, Peter, Anwar, Jamshed January 2012 (has links)
No / PURPOSE: To explore the use of crystal inter-planar d-spacings and slip-plane interaction energies for predicting and characterising mechanical properties of crystalline solids. METHODS: Potential relationships were evaluated between mechanical properties and inter-planar d-spacing, inter-planar interaction energy, and dispersive surface energy as determined using inverse gas chromatography (IGC) for a set of pharmaceutical materials. Inter-planar interaction energies were determined by molecular modelling. RESULTS: General trends were observed between mechanical properties and the largest inter-planar d-spacing, inter-planar interaction energies, and IGC dispersive surface energy. A number of materials showed significant deviations from general trends. Weak correlations and outliers were rationalised. CONCLUSIONS: Results suggest that the highest d-spacing of a material could serve as a first-order indicator for ranking mechanical behaviour of pharmaceutical powders, but with some reservation. Inter-planar interaction energy normalised for surface area shows only a weak link with mechanical properties and does not appear to capture essential physics of deformation. A novel framework linking mechanical properties of crystals to the distinct quantities, slip-plane energy barrier and inter-planar interaction (detachment) energy is proposed.
23

Investigation and Optimization of a Solvent / Anti-Solvent Crystallization Process for the Production of Inhalation Particles

Agrawal, Swati 29 July 2010 (has links)
Dry powder inhalers (DPIs) are commonly used to deliver drugs to the lungs. The drug particles used in these DPIs should possess a number of key properties. These include an aerodynamic particle size < 5μm and particle crystallinity for long term formulation stability. The conventionally used micronization technique to produce inhalation particles offers limited opportunities to control and optimize the particle characteristics. It is also known to induce crystalline disorder in the particles leading to formulation instability. Hence, this research project investigates and optimizes a solvent/anti-solvent crystallization process capable of directly yielding inhalation particles using albuterol sulfate (AS) as a model drug. Further, the feasibility of the process to produce combination particles of AS and ipratropium bromide monohydrate (IB) in predictable proportions and in a size suitable for inhalation is also investigated. The solvent / anti-solvent systems employed were water / ethyl acetate (EA) and water / isopropanol (IPA). Investigation and optimization of the crystallization variables with the water / EA system revealed that particle crystallinity was significantly influenced by an interaction between the drug solution / anti-solvent ratio (Ra ratio), stirring speed and crystal maturation time. Inducing a temperature difference between the drug solution and anti-solvent (Tdrug solution > Tanti-solvent) resulted in smaller particles being formed at a positive temperature difference of 65°C. IPA was shown to be the optimum anti-solvent for producing AS particles (IPA-AS) in a size range suitable for inhalation. In vitro aerosol performance of these IPA-AS particles was found to be superior compared to the conventionally used micronized particles when aerosolized from the Novolizer®. The solvent / anti-solvent systems investigated and optimized for combination particles were water / EA, water / IPA, and water / IPA:EA 1:10 (w/w). IPA was found to be the optimum anti-solvent for producing combination particles of AS and IB with the smallest size. These combination particles showed uniform co-deposition during in vitro aerosol performance testing from the Novolizer®. Pilot molecular modeling studies in conjunction with the analysis of particle interactions using HINT provided an improved understanding of the possible interactions between AS and IB within a combination particle matrix.
24

Contribution to the study of sympathetic nervous system modulation of exercise capacity: effects of ß-blocker and ß2-stimulant drugs

Beloka, Sofia 25 October 2011 (has links)
The sympathetic nervous system plays a key role in the regulation of cardiovascular and ventilatory responses during exercise. The regulation of the heart and peripheral circulation by the autonomic nervous system is accomplished by control centers that receive input from mechanical and chemical receptors through the body. Therefore, the changes in sympathetic and parasympathetic activity allow for rapid responses. <p><p>Exercise is associated with increases of ventilation, heart rate and blood pressure. Ventilation increases adaptedly to increased oxygen uptake (VO2) and carbon dioxide output (VCO2) and eventually to limit metabolic acidosis occurring above the ventilatory threshold. Cardiac output increases to meet the contracting muscles’ requirement for flow. The increase in cardiac output occurs through increases in both heart rate and stroke volume and is regulated by feed-forward mechanisms: central command and exercise pressor reflex. <p><p>Skeletal muscle contraction elicits a reflex increase in sympathetic outflow which causes vasoconstriction contributing to the exercise induced rise in blood pressure. This reflex is triggered by stimulation of metabo- and chemoreceptors. Although the precise stimulus is not known, adrenergic receptor signaling is involved in the cardiovascular and respiratory alterations in response to exercise. <p><p>This thesis has been devoted to a better understanding of the functional aspects of sympathetic nervous system activation during dynamic and resistive exercise, with use of β blocker and β2 stimulant interventions The hypotheses were: 1) that β blocker interventions would decrease aerobic exercise capacity by a limitation of maximal cardiac output, but more so the ventilatory responses to exercise because of a decreased chemosensitivity, thereby decreasing dyspnea, and 2) β2 stimulant interventions would slightly increase aerobic exercise capacity by an increase in maximal cardiac output, but also the ventilatory responses because of an increased chemosensitivity, with possible decrease of the ventilatory reserve at exercise and increased dyspnea. Both interventions could affect maximal muscle strength through central effects.<p><p>Ventilatory responses to hyperoxic hypercapnia (central chemoreflex) and to isocapnic hypoxia (peripheral chemoreflex) were confronted to measurements of ventilatory equivalents for oxygen (O2) and carbon dioxide (CO2) during standard cardiopulmonary exercise test (CPET). Resting 5 measurements of muscle sympathetic nervous activity (MSNA) were obtained in different conditions with and without pharmacological interventions. Muscle metaboreflex and muscle stength measurements were also considered. Drugs with β blocker or β2 stimulant properties were administered in range of doses used in clinical practice for the teatment of cardiovascular or rerspiratory conditions. The results show that β blockade with bisoprolol slightly reduced maximal exercise capacity as assessed by a maximal oxygen uptake (VO2max) or maximal workload (Wmax), with a decreased maximal heart rate, without significant effect on ventilation (VE) or MSNA responses to hypercapnia, hyperoxia or to isometric muscle contraction or ischemia. Both VE/VO2 and VE/VCO2 slopes were decreased during CPET, which was attributable to β blockade-related hemodynamic changes. On the other hand, stimulation of β2 receptors with salbutamol did not affect exercise capacity as assessed by VO2max or Wmax in spite of increased peripheral chemosensitivity with increased VE/VCO2 slopes and early lactic acidosis. MSNA burst frequency, muscle metaboreflex and maximal isokinetic muscle strength were not affected by salbutamol. <p><p>Thus, aerobic exercise capacity in healthy subjects is sensitive to sympathetic nervous system modulation by β blocker or β2 stimulant interventions with drugs at doses prescribed in clinical practice. B blocker intervention has a slight limitation of aerobic exercise capacity and a hemodynamic decrease in ventilation, while β2 stimulant intervention has no change in exercise capacity with associated increased ventilatory responses because of increased chemosensitivity, partly related to early lactic acidosis. None of the studied phamacologic interventions affected MSNA or muscle strength measurements. <p><p>We hope that these results might be useful for the understanding of the effects of revalidation to exercise of patients treated with β blocker or β2 stimulant drugs, document the limited ergogenic properties and also side effects of the intake of these substances in healthy exercising subjects.<p> / Doctorat en Sciences de la motricité / info:eu-repo/semantics/nonPublished
25

Clinical Inquiries. Do Inhaled Beta-Agonists Control Cough in URIs or Acute Bronchitis?

Stephens, Mary M., Nashelsky, Joan 01 August 2004 (has links)
No description available.

Page generated in 0.0537 seconds