• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of advanced geometric models and acceleration techniques for Monte Carlo simulation in Medical Physics

Badal Soler, Andreu 24 April 2008 (has links)
Els programes de simulació Monte Carlo de caràcter general s'utilitzen actualment en una gran varietat d'aplicacions.Tot i això, els models geomètrics implementats en la majoria de programes imposen certes limitacions a la forma dels objectes que es poden definir. Aquests models no són adequats per descriure les superfícies arbitràries que es troben en estructures anatòmiques o en certs aparells mèdics i, conseqüentment, algunes aplicacions que requereixen l'ús de models geomètrics molt detallats no poden ser acuradament estudiades amb aquests programes.L'objectiu d'aquesta tesi doctoral és el desenvolupament de models geomètrics i computacionals que facilitin la descripció dels objectes complexes que es troben en aplicacions de física mèdica. Concretament, dos nous programes de simulació Monte Carlo basats en PENELOPE han sigut desenvolupats. El primer programa, penEasy, utilitza un algoritme de caràcter general estructurat i inclou diversos models de fonts de radiació i detectors que permeten simular fàcilment un gran nombre d'aplicacions. Les noves rutines geomètriques utilitzades per aquest programa, penVox, extenen el model geomètric estàndard de PENELOPE, basat en superfícices quàdriques, per permetre la utilització d'objectes voxelitzats. Aquests objectes poden ser creats utilitzant la informació anatòmica obtinguda amb una tomografia computeritzada i, per tant, aquest model geomètric és útil per simular aplicacions que requereixen l'ús de l'anatomia de pacients reals (per exemple, la planificació radioterapèutica). El segon programa, penMesh, utilitza malles de triangles per definir la forma dels objectes simulats. Aquesta tècnica, que s'utilitza freqüentment en el camp del disseny per ordinador, permet representar superfícies arbitràries i és útil per simulacions que requereixen un gran detall en la descripció de la geometria, com per exemple l'obtenció d'imatges de raig x del cos humà.Per reduir els inconvenients causats pels llargs temps d'execució, els algoritmes implementats en els nous programes s'han accelerat utilitzant tècniques sofisticades, com per exemple una estructura octree. També s'ha desenvolupat un paquet de programari per a la paral·lelització de simulacions Monte Carlo, anomentat clonEasy, que redueix el temps real de càlcul de forma proporcional al nombre de processadors que s'utilitzen.Els programes de simulació que es presenten en aquesta tesi són gratuïts i de codi lliures. Aquests programes s'han provat en aplicacions realistes de física mèdica i s'han comparat amb altres programes i amb mesures experimentals.Per tant, actualment ja estan llestos per la seva distribució pública i per la seva aplicació a problemes reals. / Monte Carlo simulation of radiation transport is currently applied in a large variety of areas. However, the geometric models implemented in most general-purpose codes impose limitations on the shape of the objects that can be defined. These models are not well suited to represent the free-form (i.e., arbitrary) shapes found in anatomic structures or complex medical devices. As a result, some clinical applications that require the use of highly detailed phantoms can not be properly addressed.This thesis is devoted to the development of advanced geometric models and accelration techniques that facilitate the use of state-of-the-art Monte Carlo simulation in medical physics applications involving detailed anatomical phantoms. To this end, two new codes, based on the PENELOPE package, have been developed. The first code, penEasy, implements a modular, general-purpose main program and provides various source models and tallies that can be readily used to simulate a wide spectrum of problems. Its associated geometry routines, penVox, extend the standard PENELOPE geometry, based on quadric surfaces, to allow the definition of voxelised phantoms. This kind of phantoms can be generated using the information provided by a computed tomography and, therefore, penVox is convenient for simulating problems that require the use of the anatomy of real patients (e.g., radiotherapy treatment planning). The second code, penMesh, utilises closed triangle meshes to define the boundary of each simulated object. This approach, which is frequently used in computer graphics and computer-aided design, makes it possible to represent arbitrary surfaces and it is suitable for simulations requiring a high anatomical detail (e.g., medical imaging).A set of software tools for the parallelisation of Monte Carlo simulations, clonEasy, has also been developed. These tools can reduce the simulation time by a factor that is roughly proportional to the number of processors available and, therefore, facilitate the study of complex settings that may require unaffordable execution times in a sequential simulation.The computer codes presented in this thesis have been tested in realistic medical physics applications and compared with other Monte Carlo codes and experimental data. Therefore, these codes are ready to be publicly distributed as free and open software and applied to real-life problems.
2

Analysis and Simulation of Transverse Random Fracture of Long Fibre Reinforced Composites

Trias Mansilla, Daniel 18 April 2005 (has links)
La present tesi proposa una metodología per a la simulació probabilística de la fallada de la matriu en materials compòsits reforçats amb fibres de carboni, basant-se en l'anàlisi de la distribució aleatòria de les fibres. En els primers capítols es revisa l'estat de l'art sobre modelització matemàtica de materials aleatoris, càlcul de propietats efectives i criteris de fallada transversal en materials compòsits.El primer pas en la metodologia proposada és la definició de la determinació del tamany mínim d'un Element de Volum Representatiu Estadístic (SRVE) . Aquesta determinació es du a terme analitzant el volum de fibra, les propietats elàstiques efectives, la condició de Hill, els estadístics de les components de tensió i defromació, la funció de densitat de probabilitat i les funcions estadístiques de distància entre fibres de models d'elements de la microestructura, de diferent tamany. Un cop s'ha determinat aquest tamany mínim, es comparen un model periòdic i un model aleatori, per constatar la magnitud de les diferències que s'hi observen.Es defineix, també, una metodologia per a l'anàlisi estadístic de la distribució de la fibra en el compòsit, a partir d'imatges digitals de la secció transversal. Aquest anàlisi s'aplica a quatre materials diferents.Finalment, es proposa un mètode computacional de dues escales per a simular la fallada transversal de làmines unidireccionals, que permet obtenir funcions de densitat de probabilitat per a les variables mecàniques. Es descriuen algunes aplicacions i possibilitats d'aquest mètode i es comparen els resultats obtinguts de la simulació amb valors experimentals. / This thesis proposes a methodology for the probabilistic simulation of the transverse failure of Carbon Fibre Reinforced Polymers (CFRP) by analyzing the random distribution of the fibres within the composite. First chapters are devoted to the State-of-the-art review on the modelization of random materials, the computation of effective properties and the transverse failure of fibre reinforced polymers.The first step in the proposed methodology is the definition of a Statistical Representative Volume Element (SRVE). This SRVE has to satisfy criteria based on the analysis of the volume fraction, the effective properties, the Hill Condition, the statistics of the stress and strain components, the probability density function of the stress and strain components and the inter-fibre distance statistical distributions. Once this SRVE has been achieved, a comparison between a periodic model and a random model is performed to quantitatively analyze the differences between the results they provide.Also a methodology for the statistical analysis of the distribution of the fibre within the composite from digital images of the transverse section. This analysis is performed for four different materials.Finally, a two-scale computational method for the transverse failure of unidirectional laminae is proposed. This method is able to provide probability density functions of the mechanical variables in the composite. Some applications and possibilities of the method are given and the simulation results are compared with experimental tests.

Page generated in 0.0677 seconds