Spelling suggestions: "subject:"alexandrie"" "subject:"alexandrine""
1 |
Relaxação dipolar elétrica fotoinduzida em alexandritas sintética e natural / Photoinduced electric dipole relaxation in synthetic and natural alexandriteScalvi, Rosa Maria Fernandes 09 March 2000 (has links)
Realizamos a caracterização elétrica de alexandrita (BeAl2O4:Cr3+), formas sintética e natural, através de medidas de Corrente de Despolarização Termicamente Estimulada (CDTE). Obtivemos evidências conclusivas do fenômeno de relaxação dipolar em ambos os tipos de amostra, e que as cwas experimentais devem ser ajustadas por urna distribuição contínua dos parârnetros de relaxação. Para a amostra sintética a banda de CDTE está centralizada em tomo de 179K e para as naturais em 187 a 195K. Utilizando o método de Havriliak-Negarni são necessárias duas distribuições continuas de Ea e ▨ para ajustar as curvas experimentais, sendo que uma delas, em torno de 177 K, com Ea ≅ 0,56 e ▨ ≅ 1,2x10-14s sente em ambos os tipos de amostras. As bandas de CDTE são atribuídas a dipolos do tipo impureza-vacância de oxigênio ou a deformação local da estrutura causada pela diferença de raio iônico entre os íons Cr3+ (0,615 Å) e A13+(0,535 Å). Também realizamos medidas de CDTE fotoinduzidas, onde as amostras são irradiadas com um laser sintonizado em comprimentos de onda entre 3373 e 676,4nm. Verificamos que as bandas de CDTE podem ser \"destruídas\" ou \"criadas\" com a incidência de luz com diferentes condições iniciais de polarização. Para ajudar a interpretação dos resultados de CDTE nós usamos outras técnicas de caracterização, tais como Absorção Óptica, Luminescência, Difração de Raios X e micro análises de EDX e WDX. Todas estas técnicas foram também aplicadas às amostras naturais após tratamentos térmicos consecutivos / We have done electrical characterization of natural and synthet ic alexandrite (BeAl2O4:Cr3+), usimg the thermally stimulated depolarization current (TSDC) technique. We have obtained conclusive evidences of dipole relaxation in both kinds of samples. Besides, the experimental data must be fitted by a continuous distribution of relaxation parameters. For the synthetic sample, TSDC band has a peak about 179K and for natural samples, TSDC bands have peaks about 187K at 195K. Using Havriliak-Negami method, we need two continuous distributions of activation energy (Ea) and relaxation time constant (▨) to fit experimental data. One of these two curves, centered at 177K, is present for both kinds of sarnples and has Ea ≅ 0,56 e ▨ ≅ 1,2x10-14s. T SDC bands are attributed to impurity-oxygen vacancy dipoles or local structure deforrnation caused by the dserence between ionic radius of Cr3+ (0,615 Å) and A13+(0,535 Å) ions. We have also carried out photo-induced TSDC, where sarnples are irradiated with a tunable laser with wavelength fiom 337.5nm to 676.5nm. We have observed that TSDC bands rnay be destroyed or created with illumination fiom daerent polarization conditions. To help the interpretation of TSDC results we have used other techniques of characterization such as optical absorption, luminescence, X-ray difliaction, besides EDX and WDX rnicroanalyses. All of these techniques were also applied to natural samples afier consecutive annealing
|
2 |
Relaxação dipolar elétrica fotoinduzida em alexandritas sintética e natural / Photoinduced electric dipole relaxation in synthetic and natural alexandriteRosa Maria Fernandes Scalvi 09 March 2000 (has links)
Realizamos a caracterização elétrica de alexandrita (BeAl2O4:Cr3+), formas sintética e natural, através de medidas de Corrente de Despolarização Termicamente Estimulada (CDTE). Obtivemos evidências conclusivas do fenômeno de relaxação dipolar em ambos os tipos de amostra, e que as cwas experimentais devem ser ajustadas por urna distribuição contínua dos parârnetros de relaxação. Para a amostra sintética a banda de CDTE está centralizada em tomo de 179K e para as naturais em 187 a 195K. Utilizando o método de Havriliak-Negarni são necessárias duas distribuições continuas de Ea e ▨ para ajustar as curvas experimentais, sendo que uma delas, em torno de 177 K, com Ea ≅ 0,56 e ▨ ≅ 1,2x10-14s sente em ambos os tipos de amostras. As bandas de CDTE são atribuídas a dipolos do tipo impureza-vacância de oxigênio ou a deformação local da estrutura causada pela diferença de raio iônico entre os íons Cr3+ (0,615 Å) e A13+(0,535 Å). Também realizamos medidas de CDTE fotoinduzidas, onde as amostras são irradiadas com um laser sintonizado em comprimentos de onda entre 3373 e 676,4nm. Verificamos que as bandas de CDTE podem ser \"destruídas\" ou \"criadas\" com a incidência de luz com diferentes condições iniciais de polarização. Para ajudar a interpretação dos resultados de CDTE nós usamos outras técnicas de caracterização, tais como Absorção Óptica, Luminescência, Difração de Raios X e micro análises de EDX e WDX. Todas estas técnicas foram também aplicadas às amostras naturais após tratamentos térmicos consecutivos / We have done electrical characterization of natural and synthet ic alexandrite (BeAl2O4:Cr3+), usimg the thermally stimulated depolarization current (TSDC) technique. We have obtained conclusive evidences of dipole relaxation in both kinds of samples. Besides, the experimental data must be fitted by a continuous distribution of relaxation parameters. For the synthetic sample, TSDC band has a peak about 179K and for natural samples, TSDC bands have peaks about 187K at 195K. Using Havriliak-Negami method, we need two continuous distributions of activation energy (Ea) and relaxation time constant (▨) to fit experimental data. One of these two curves, centered at 177K, is present for both kinds of sarnples and has Ea ≅ 0,56 e ▨ ≅ 1,2x10-14s. T SDC bands are attributed to impurity-oxygen vacancy dipoles or local structure deforrnation caused by the dserence between ionic radius of Cr3+ (0,615 Å) and A13+(0,535 Å) ions. We have also carried out photo-induced TSDC, where sarnples are irradiated with a tunable laser with wavelength fiom 337.5nm to 676.5nm. We have observed that TSDC bands rnay be destroyed or created with illumination fiom daerent polarization conditions. To help the interpretation of TSDC results we have used other techniques of characterization such as optical absorption, luminescence, X-ray difliaction, besides EDX and WDX rnicroanalyses. All of these techniques were also applied to natural samples afier consecutive annealing
|
3 |
Medidas de intensidade de saturação por refração não-linear transiente / Measurement of saturation intensities by transient nonlinear refractionPilla, Viviane 28 June 1996 (has links)
Em sólidos dopados com Cr+3, o efeito não-linear ocorre devido à população de íons dopantes no estado metaestável, o qual possui uma polarizabilidade diferente do estado fundamental. Nestes materiais, o índice de refração não-linear n2 é proporcional a Δα/Is , onde Δα é a diferença de polarizabilidade, entre os estados, excitado (metaestável) e o fundamental, e Is a intensidade de saturação da transição. A técnica conhecida como Z-Scan é na atualidade a mais popular para medidas de n2 e foi recentemente aplicada em cristais dopados com Cr+3. Nestes materiais, o tempo de resposta do meio não-linear é dado pelo longo tempo de vida espontâneo do estado excitado τ0 (usualmente τ0 > 100 µs) tornando possível medidas da resposta transiente do sinal. Isto torna possível a normalização do sinal pela medida em t =O (quando o efeito não-linear ainda não se manifestou) com o intuito de eliminar efeitos lineares parasíticos (devido a imperfeições da superfície da amostra, não paralelismo, etc.). Neste trabalho 7 nós usamos o método de Z-Scan resolvido no tempo para determinar não apenas n2, mas também a intensidade de saturação Is. Nós introduzimos um novo método para determinação de Is, através da medida de Z-Scan transiente. Os valores de n2 e Is, podem ser usados para calcular a seção de choque da absorção no estado fundamental σ1, Δα e Δσ (a diferença de seção de choque de absorção entre o estado excitado e metaestável). , Fizemos medidas em cristais de rubi e alexandrita usando um laser de Ar modulado por um \"chopper\". No caso da alexandrita, o Cr+3 pode ocupar dois sítios que apresentam propriedades bastante diferentes. A técnica resolvida no tempo permite que se diferencie estes dois sítios, e então se determine n2, Is, τ0, Δα e Δσ para o íon de Cr+3 em cada tipo de sítio (no caso do sítio de espelho os valores de n2 e Δα são inéditos). / In Cr+3 doped solids, the nonlinearity originates from the population of dopant íon metastable excited state, which has a polarizability different from that of ground state. In these materials, the non-linear refractive index n2 is proportional to a Δα/Is, where a Δα is polarizability difference between excited and ground states and Is is the transition saturation intensity. The thecnique known as Z-Scan is nowadays the most popular one for n2 measurements and was recently applied to Cr+3 doped solids. In this material, the nonlinearity response time is given by the excited state spontaneous lifetime τ0 (usually τ0 > 100 µs) permitting transient response measurements. This allows signal normalization at t=0 (when the nonlinear effect did not appear yet) in order to eliminate parasitic linear effects (due to nonparallel sample surfaces, surface imperfections, etc.). In the present work we used a time resolved Z-Scan method to determine not only n2 but also the saturation intensity Is and these values can be used to calculate the ground state absorption cross section σ1, Δα and Δσ (where Δσ is the absorption cross section difference between excited and ground states). We introduced a new method to measure Is through transient Z-Scan measurements. We performed measurements in ruby and alexandrite using a chopped Ar+ ion laser. In the alexandrite crystal the Cr+3 ion can occupied two different sites that have very different spectroscopy properties. The time resolved technique allowed us to distinguished these two sites and then determine n2, σ0, Δα , Δσ and Is for the Cr+3 ion each kind of site(our n2, Δα and Is results for the mirror site are original contributions of these work).
|
4 |
Medidas de intensidade de saturação por refração não-linear transiente / Measurement of saturation intensities by transient nonlinear refractionViviane Pilla 28 June 1996 (has links)
Em sólidos dopados com Cr+3, o efeito não-linear ocorre devido à população de íons dopantes no estado metaestável, o qual possui uma polarizabilidade diferente do estado fundamental. Nestes materiais, o índice de refração não-linear n2 é proporcional a Δα/Is , onde Δα é a diferença de polarizabilidade, entre os estados, excitado (metaestável) e o fundamental, e Is a intensidade de saturação da transição. A técnica conhecida como Z-Scan é na atualidade a mais popular para medidas de n2 e foi recentemente aplicada em cristais dopados com Cr+3. Nestes materiais, o tempo de resposta do meio não-linear é dado pelo longo tempo de vida espontâneo do estado excitado τ0 (usualmente τ0 > 100 µs) tornando possível medidas da resposta transiente do sinal. Isto torna possível a normalização do sinal pela medida em t =O (quando o efeito não-linear ainda não se manifestou) com o intuito de eliminar efeitos lineares parasíticos (devido a imperfeições da superfície da amostra, não paralelismo, etc.). Neste trabalho 7 nós usamos o método de Z-Scan resolvido no tempo para determinar não apenas n2, mas também a intensidade de saturação Is. Nós introduzimos um novo método para determinação de Is, através da medida de Z-Scan transiente. Os valores de n2 e Is, podem ser usados para calcular a seção de choque da absorção no estado fundamental σ1, Δα e Δσ (a diferença de seção de choque de absorção entre o estado excitado e metaestável). , Fizemos medidas em cristais de rubi e alexandrita usando um laser de Ar modulado por um \"chopper\". No caso da alexandrita, o Cr+3 pode ocupar dois sítios que apresentam propriedades bastante diferentes. A técnica resolvida no tempo permite que se diferencie estes dois sítios, e então se determine n2, Is, τ0, Δα e Δσ para o íon de Cr+3 em cada tipo de sítio (no caso do sítio de espelho os valores de n2 e Δα são inéditos). / In Cr+3 doped solids, the nonlinearity originates from the population of dopant íon metastable excited state, which has a polarizability different from that of ground state. In these materials, the non-linear refractive index n2 is proportional to a Δα/Is, where a Δα is polarizability difference between excited and ground states and Is is the transition saturation intensity. The thecnique known as Z-Scan is nowadays the most popular one for n2 measurements and was recently applied to Cr+3 doped solids. In this material, the nonlinearity response time is given by the excited state spontaneous lifetime τ0 (usually τ0 > 100 µs) permitting transient response measurements. This allows signal normalization at t=0 (when the nonlinear effect did not appear yet) in order to eliminate parasitic linear effects (due to nonparallel sample surfaces, surface imperfections, etc.). In the present work we used a time resolved Z-Scan method to determine not only n2 but also the saturation intensity Is and these values can be used to calculate the ground state absorption cross section σ1, Δα and Δσ (where Δσ is the absorption cross section difference between excited and ground states). We introduced a new method to measure Is through transient Z-Scan measurements. We performed measurements in ruby and alexandrite using a chopped Ar+ ion laser. In the alexandrite crystal the Cr+3 ion can occupied two different sites that have very different spectroscopy properties. The time resolved technique allowed us to distinguished these two sites and then determine n2, σ0, Δα , Δσ and Is for the Cr+3 ion each kind of site(our n2, Δα and Is results for the mirror site are original contributions of these work).
|
5 |
Amplification régénérative et multipassage d'impulsions lumineuses dans des milieux solides (yag dope néodyme, alexandrite, saphir dope titane) .Estable, Frédéric 05 March 1992 (has links) (PDF)
Ce mémoire présente diverses expériences d'amplification d'impulsions lumineuses brèves ou mono fréquences réalisées avec des milieux laser solides. Une étude théorique de l'amplification laser en régime de saturation est présentée dans la première partie. Les effets de déformation des profils spatial et temporel par la saturation du gain sont étudiés a partir d'un modèle théorique simple considérant le milieu comme un ensemble de cibles éphémères. Il est démontré par ailleurs que le temps de relaxation du niveau inférieur de la transition laser peut avoir une certaine incidence sur le rendement effectif de l'amplification. La deuxième partie est entièrement consacrée a la description d'un amplificateur régénératif nanoseconde utilisant du yag dope au néodyme ou de l'alexandrite comme milieux actifs. Ce dispositif permet de produire des impulsions monofréquences par injection d'une cavité esclave. Une étude détaillée de ce dispositif montre qu'un asservissement de la longueur de la cavité est inutile avec ce type de fonctionnement. Un nouveau matériau solide accordable aux propriétés exceptionnelles est présenté dans la dernière partie de ce mémoire: il s'agit du saphir dope titane. Une mesure précise de l'énergie de saturation a permis d'aborder l'amplification de plusieurs types de signaux lumineux et de réaliser divers oscillateurs aux caractéristiques variées. De nombreux amplificateurs utilisant le saphir dope titane comme milieu actif sont également présentés. Ils permettent d'amplifier des impulsions monomodes ainsi que des impulsions brèves.
|
Page generated in 0.1589 seconds