• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antimicrobial Susceptibility of Listeria monocytogenes to Bacteriophage LISTEX™ P100 in Alfalfa Sprouts (Medicago sativa)

Sawant, Tushar 01 May 2015 (has links)
The seed germination process during sprout production provides suitable environmental conditions for the growth of pathogenic bacteria, such as Listeria monocytogenes. A potential way to control this bacterial growth is through the use of bacteriophages, which are naturally occurring viruses that specifically attack bacterial targets and have been shown to be effective antimicrobials in some foods. Therefore, the objective of this study was to evaluate the antimicrobial susceptibility of L. monocytogenes to bacteriophage on alfalfa sprouts during seed germination and subsequent refrigerated storage at 4 °C. Alfalfa sprout seeds were dip-inoculated with 5.5 x 105 CFU/ml L. monocytogenes serogroups 1 and 4. This was followed by treatment with the commercial bacteriophage LISTEX™ P100 at a concentration of 5.3 x 107 PFU/ml. The seeds were then soaked and germinated for 80 h using the glass jar method. The concentration of L. monocytogenes was determined every 24 h using PALCAM agar plated in triplicate. When compared to the spiked, untreated control, treatment of sprout seeds with LISTEX™ P100 resulted in a statistically significant (p < 0.05) reduction of 1.6 log10 CFU/g L. monocytogenes after the initial 24 h of germination. However, the bacteriophage did not show a lasting inhibitory effect, with no statistically significant reductions in L. monocytogenes growth as compared to the control at subsequent time points. The bacteriophage remained stable over the entire germination and storage period. Although biocontrol of Listeria with bacteriophages has high potential to serve as an alternative strategy to control foodborne illnesses, factors such as phage delivery and dose optimization in sprouts need to be further investigated.
2

The Use of Lactic Acid Bacteria to Control the Growth of Foodborne Pathogens on Fresh-Cut Fruits and Sprout Vegetables

Rossi, Franca Gabriela 01 June 2016 (has links) (PDF)
Growing consumer awareness of the health benefits associated with fruits and vegetables and demand for easy to prepare products has prompted the development of a wide variety of minimally processed fruits and vegetables. Minimally processed fruits and vegetables are often peeled, cut, or diced which compromise the produces’ natural protective barriers, exposing a nutrient rich medium and providing an ideal environment for the growth of microorganisms, including foodborne pathogens. The germination conditions of sprout vegetables consisting of relatively high temperatures and humidity, low light and abundance of nutrients are also conducive to the proliferation of foodborne pathogens. Recent outbreaks and recalls indicate additional measures are needed to improve food safety and maintain the integrity of the food industry. The objective of this research was to evaluate the efficacy of Lactic Acid Bacteria (LAB) against E. coli O157:H7, L. monocytogenes, and Salmonella spp. on apple slices and alfalfa sprouts and it’s influence on product quality. Apple slices inoculated with E. coli O157:H7, L. monocytogenes, and Salmonella spp. (each at 104 CFU/g) were treated with Lb. plantarum alone and in combination with Pediococcus acidophilus and P. pentosaceus (LPP) (107 CFU/g) while alfalfa seeds were inoculated with L. monocytogenes and Salmonella spp. (each at 101 CFU/g and 103 CFU/g) and treated with LPP (107 CFU/g). The growth of the microorganisms on the apple slices was assessed during five and seven days of storage at 4◦C and 20◦C, respectively. Growth on alfalfa seeds was reported during five days of sprouting at 20◦C. Populations of LAB were maintained between 7.0 log CFU/g and 8.0 log CFU/g throughout storage and sprouting on the sliced apples and alfalfa seeds, respectively. Although LAB had no significant effect on pathogen populations on apple slices during storage at 4°C (p > 0.05), populations were significantly different at 20°C (p < 0.05). Populations of L. monocytogenes in the presence of Lb. plantarum and LPP were 1.84 log CFU/g and 2.84 log CFU/g less than the controls after five days of storage at 20°C (p < 0.05). Populations of E. coli O157:H7 in the presence of Lb. plantarum and LPP were 1.83 log CFU/g and 1.86 log CFU/g less than the control after one and three days of storage, respectively. Finally, populations of Salmonella spp. were 0.86 log CFU/g less than populations in the absence of LPP after three days of storage. LPP had a significant effect on the growth of L. monocytogenes and Salmonella spp. on alfalfa seeds (p < 0.05). After five days of sprouting, populations of L. monocytogenes at an initial concentration of 101 CFU/g and 103 CFU/g on seeds treated with LPP were approximately 4.5 log CFU/g and 1.0 log CFU/g less than the untreated seeds, respectively. Populations of Salmonella spp. at an initial concentration of 101 CFU/g and 103 CFU/g were 1.0 log CFU/g less than the control. Overall, on apple slices the combination of Lb. plantarum with P. acidophilum and P. pentosaceus demonstrated greater efficacy than Lb. plantarum alone and reduction of L. monocytogenes by Lb. plantarum and LPP was greater than Salmonella spp. and E. coli O157:H7 on apple slices and alfalfa seeds, alike. LAB had a minimal effect on the quality of the apple slices and alfalfa seeds. LAB could be an effective strategy in reducing pathogen populations at abusive temperatures and germination conditions without influencing the quality of minimally processed fruit and vegetables.

Page generated in 0.0551 seconds