• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 384
  • 222
  • 28
  • 21
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 841
  • 280
  • 254
  • 237
  • 228
  • 217
  • 67
  • 58
  • 58
  • 57
  • 56
  • 47
  • 47
  • 46
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

The epidemiology of cucumber mosaic virus in narrow-leafed lupins (Lupinus angustifolius) in South Australia

Geering, Andrew D.W. January 1992 (has links) (PDF)
Includes bibliographical references (leaves 147-171). Studies factors affecting the rate of epidemic progress of cucumber mosaic virus in Lupinus angustifolius.
732

The epidemiology of cucumber mosaic virus in narrow-leafed lupins (Lupinus angustifolius) in South Australia / Andrew D.W. Geering

Geering, Andrew D.W. January 1992 (has links)
Includes bibliographical references (leaves 147-171). / xx, 171 leaves : ill. (some col.), photos ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Studies factors affecting the rate of epidemic progress of cucumber mosaic virus in Lupinus angustifolius. / Thesis (Ph.D.)--Dept. of Crop Protection, University of Adelaide,1992
733

Studies on waterlogging tolerance in lucerne, Medicago sativa, L.

Kaehne, Ian D. (Ian David) January 1977 (has links) (PDF)
Includes bibliographical references (p. B1-B24)
734

Characterization of anthocyanidin-accumulating Lc-alfalfa for ruminants: nutritional profiles, digestibility, availability and molecular structures, and bloat characteristics

Jonker, Arjan 07 June 2011
Grazing cattle on alfalfa (Medicago sativa L.) would be economically beneficial, but its rapid initial rate of protein degradation results in pasture bloat, low efficiency of protein utilization and excessive N pollution into the environment. Introducing a gene that stimulates the accumulation of mono/polymeric anthocyanidins might reduce the ruminal protein degradation rate and reduce bloat related foam stability. The overall objective of this thesis was to evaluate newly developed anthocyanidin-accumulating Lc-alfalfa progeny for nutritional properties (composition, site of degradation and molecular structure), environmental emissions and bloat characteristics. The objective of the first study was to determine survival and phytochemical and chemical profiles of Lc-alfalfa progeny (BeavLc1, RambLc3 and RangLc4) and their non-transgenic (NT) parental cultivars (Beaver, Rambler and Rangelander). Lc-alfalfa forage accumulated enhanced amounts of anthocyanidin, with an average concentration of 197.4 µg/g DM, while proanthocyanidin (i.e. condensed tannins) were not detected. Both of these metabolites were absent in the NT-parental varieties. Lc-alfalfa progeny had ~3 % less crude protein (CP) and ~3 % more carbohydrates (CHO), which resulted in their 11 g/kg lower N:CHO ratio compared with NT-alfalfa. Total rumen-degradable N:CHO ratio based on chemical analysis was 12.9 g/kg lower in Lc-alfalfa compared with NT-alfalfa. The objective of the second study was to evaluate in vitro degradation, fermentation and microbial-N partitioning of three forage color phenotypes [green, light purple-green (LPG) and purple-green (PG)] within Lc-progeny and their parental green NT-alfalfa varieties. Purple-green-Lc alfalfa accumulated more anthocyanidin than Green-Lc with LPG-Lc intermediate. Gas, methane and ammonia accumulation rates were slower for the two purple-Lc phenotypes compared with NT-alfalfa with Green-Lc intermediate. Effective degradable DM and N were lower in the three Lc-phenotypes compared with NT-alfalfa. Anthocyanidin concentration correlated negatively with gas and methane production rates and effective degradability of DM and N. The objectives of the third study were to evaluate in situ ruminal degradation characteristics and synchronization ratios, and to model protein availability to dairy cattle and net energy for lactation of three Lc-alfalfa progenies, BeavLc1, RambLc3 and RangLc4 and the cultivar AC Grazeland (selected for a low initial rate of ruminal degradation). Anthocyanidin accumulation was on average 163.4 ìg/g DM in the three Lc-progeny while AC Grazeland did not accumulate anthocyanidin. The basic chemical composition of the original samples, soluble and potentially degradable fractions and degradation characteristics of crude protein and carbohydrates were similar in Lc-alfalfa and AC Grazeland. The undegradable in situ crude protein and neutral detergent fiber fraction were, respectively, 1.3 %CP and 4.8 %CHO lower in the three Lc-progeny compared with AC Grazeland. Lc-alfalfa had a 0.34 MJ/kg DM higher net energy for lactation and tended to have a 11.9, 6.9 and 8.4 g/kg DM higher rumen degradable protein, rumen degraded protein balance and intestinal available protein, respectively, compared with AC Grazeland,. The hourly rumen degraded protein balance included an initial and substantial peak (over-supply) of protein relative to energy which was highest in RangLc4 and lowest in RambLc3. The hourly rumen degraded protein balance between 4 and 24 h was similar and more balanced for all four alfalfa populations. The objective of the fourth study was to determine foam formation and stability in vitro from aqueous leaf extracts of three Lc-alfalfa progeny (BeavLc1, RambLc3, RangLc4), parental NT-alfalfa and AC Grazeland (bloat reduced cultivar) harvested in the field at 07:00 or 18:00 h. Anthocyanidin accumulation averaged 247.5 ìg/g DM in the leaves of the three Lc-progeny. There was an interaction between population and harvest time for the foam parameters. Initial foam volume (0 min) and final foam volume (150 min) at 07:00 h were lower for AC Grazeland compared with all other treatments and lower for RangLc4 compared with the other two Lc-progeny at 0 min and NT-alfalfa at 150 min; while from the 18:00 h harvest, initial foam volume was larger for NT-alfalfa and final foam volume was larger for RambLc3 compared with AC Grazeland, BeavLc1 and RangLc4. Foam formation correlated positively (R = 0.30 to 0.44) with leaf DM content, leaf extract protein and ethanol-film content, spectroscopic vibration intensity due to all carbohydrates (CHOVI) and amide I:amide II ratio and negatively (R = -0.33 and -0.34; P<0.05) with á-helix:â-sheet ratio and amide I:CHOVI. Final foam volume correlated negatively (R = -0.53 to -0.25; P<0.05) with leaf extract pH, spectroscopic vibration intensity due to all protein structures, structural carbohydrates (SCVI) and lipids (CH2 and CH3 asymmetric stretching) and amide I:CHOVI ratio and corelated positively (R = 0.39 to 0.44; P<0.05) with CHOVI, amideI:SCVI ratio and CHOVI:SCVI ratio. In conclusion, all Lc-alfalfa progeny and phenotypes accumulated anthocyanidin in their forage. Lc-alfalfa progeny had lower protein and higher carbohydrate content which improved the nitrogen to carbohydrate balance compared to their parental NT-alfalfa cultivars. Rate of fermentation and effective degradability in vitro reduced for both purple anthocyanidin-accumulating Lc-alfalfa phenotypes compared with NT-alfalfa. Intestinal protein availability tended to be higher and net energy for lactation was higher from Lc-alfalfa progeny for dairy cattle compared with AC Grazeland. Foaming properties were reduced in Lc-alfalfa progeny compared with parental non-transgenic alfalfa but not compared with AC Grazeland. However, differences between the Lc-alfalfa progeny and other cultivars were small. Therefore, further increases in mono/polymeric anthocyanidin accumulation in alfalfa are required in order to develop an alfalfa cultivar with superior nutritional and bloat preventing characteristics compared to currently available alfalfa cultivars.
735

Modeling the power requirements of a rotary feeding and cutting system

Veikle, Eric Emerson 11 July 2011
<p>The purpose of this study was to develop an analytical model that could be used by the designers of a rotary feeding and cutting system (RFCS) to identify the power demand of the RFCS with limited or no required field or laboratory data. Two separate RFCS were investigated, incorporated with either a low-speed cutting process (LSCP) or a high-speed cutting process (HSCP). The results from the laboratory and field trials were used to create and validate the analytical model.</p> <p>Laboratory tests were completed with the LSCP RFCS and these concluded that counter-knife sharpness, serrations and bevel angle all had significant effects on the specific energy required by the LSCP RFCS when processing cereal straw and alfalfa. The specific energy required by the LSCP RFCS, while processing cereal straw, increased by 0.35 kWâh/tonne (or 96%) when the sharpness of the counter-knives decreased from 0.13 to 0.63 mm (where the sharpness was recorded by the leading-edge-width of the counter-knives). With the same decrease in sharpness, the specific energy required by the LSCP RFCS while processing alfalfa increased by 0.04 kWâh/tonne (or 32%). The specific energy required by the LSCP RFCS while processing cereal straw with sharp counter-knives (counter-knives with a leading edge width of 0.13 mm) increased by 0.11 kWâh/tonne (or 51%) when serrated counter-knives were used instead of un-serrated counter-knives. However, counter-knife serrations did not have a significant effect on the specific energy demand of the LSCP RFCS when sharp counter-knives were used to process alfalfa. The increase in bevel angle from 15 to 90&#x00B0; caused the specific energy required to process cereal straw and alfalfa to approximately triple. The moisture content of alfalfa also had a significant effect on the specific energy required to process alfalfa with the LSCP RFCS. The specific energy demand of the LSCP RFCS was at a maximum when alfalfa at a moisture content of 53% on a wet basis (w.b.) was processed and decreased slightly (approximately 0.04 kWâh/tonne or 10%) when dryer and wetter alfalfa was processed.</p> <p>Field tests were completed with the HSCP RFCS and it was concluded that in general, there was a direct relationship between the specific energy required by the HSCP RFCS and the moisture content of the straw, counter-knife engagement and throughput. Further, it was also concluded that the specific energy requirements of the HSCP RFCS were more sensitive to counter-knife engagement when higher moisture content straw was processed. Depending on the type of chopper used, the specific energy required by the HSCP RFCS increased anywhere from 0.15 to 0.77 kWâh/tonne (or 22 to 61%) when the counter-knife engagement was increased from 0 to 100% (or fully removed to fully engaged). Again, depending on the type of chopper used, when the moisture content of the straw processed by the chopper increased from approximately 7 to 25% w.b. the specific energy required by the chopper increased by 0.14 to 0.96 kWâh/tonne (or 28 to 84%). The effect of throughput on the specific energy demand of the HSCP RFCS was dependent on the type of chopper used. For one of the choppers, an increase in throughput from 10.5 to 13.5 tonne/h caused the specific energy required by the HSCP RFCS to increase by 0.24 kWâh/tonne (or 35%); however for a different chopper, an increase in throughput from 12 to 13 tonne/h caused the specific energy demand of the HSCP RFCS to decrease by 0.16 kWâh/tonne (or 19%).</p> <p>The analytical model was validated using a subset of the data that were collected while employing each cutting device under field conditions and the data collected with the use of a custom-designed material properties test stand. The output of the analytical model fell within the 95% confidence interval of the measured power demand for each of the rotary feeding and cutting systems, and the analytical model was therefore deemed sufficiently accurate.</p> <p>Based on the analytical model, the total power demand of both the LSCP and HSCP rotary feeding and cutting systems was largely attributed to the power required to transport plant material. Further, the power required to transport the plant material along the sides of the counter-knives was much greater than the power required to transport the plant material along the rotor bed and along the leading edge of the tines. Because of the excessive power required to transport plant material along the sides of the counter-knives, three techniques were identified as potential strategies to decrease the power demand of the RFCS. The first technique involved removing half of the tines from the RFCS, and modifying the remaining tines to decrease the amount of plant material that is entrapped between sides of the counter-knives and the tines. The second technique involved coating the inside surface of the tines with a baked Teflon, to decrease the coefficient of friction between the plant material and the RFCS. The third technique involved reshaping the counter-knives, to decrease the surface area over which plant material was transported along the side of the counter-knives. According to the analytical model, employing any of the three techniques would result in the total power demand of the RFCS to decrease by 15 to 26%. </p> <p>For the HSCP RFCS, a stochastic model was developed to identify which of the four choppers tested during field trials would have the best performance when subjected to the same operating conditions. The chopper with the best performance was the WR chopper as its use resulted in the minimum geometric mean length of material exiting the combine harvester while also consuming the least amount of specific energy.</p>
736

Modeling the power requirements of a rotary feeding and cutting system

Veikle, Eric Emerson 11 July 2011 (has links)
<p>The purpose of this study was to develop an analytical model that could be used by the designers of a rotary feeding and cutting system (RFCS) to identify the power demand of the RFCS with limited or no required field or laboratory data. Two separate RFCS were investigated, incorporated with either a low-speed cutting process (LSCP) or a high-speed cutting process (HSCP). The results from the laboratory and field trials were used to create and validate the analytical model.</p> <p>Laboratory tests were completed with the LSCP RFCS and these concluded that counter-knife sharpness, serrations and bevel angle all had significant effects on the specific energy required by the LSCP RFCS when processing cereal straw and alfalfa. The specific energy required by the LSCP RFCS, while processing cereal straw, increased by 0.35 kWâh/tonne (or 96%) when the sharpness of the counter-knives decreased from 0.13 to 0.63 mm (where the sharpness was recorded by the leading-edge-width of the counter-knives). With the same decrease in sharpness, the specific energy required by the LSCP RFCS while processing alfalfa increased by 0.04 kWâh/tonne (or 32%). The specific energy required by the LSCP RFCS while processing cereal straw with sharp counter-knives (counter-knives with a leading edge width of 0.13 mm) increased by 0.11 kWâh/tonne (or 51%) when serrated counter-knives were used instead of un-serrated counter-knives. However, counter-knife serrations did not have a significant effect on the specific energy demand of the LSCP RFCS when sharp counter-knives were used to process alfalfa. The increase in bevel angle from 15 to 90&#x00B0; caused the specific energy required to process cereal straw and alfalfa to approximately triple. The moisture content of alfalfa also had a significant effect on the specific energy required to process alfalfa with the LSCP RFCS. The specific energy demand of the LSCP RFCS was at a maximum when alfalfa at a moisture content of 53% on a wet basis (w.b.) was processed and decreased slightly (approximately 0.04 kWâh/tonne or 10%) when dryer and wetter alfalfa was processed.</p> <p>Field tests were completed with the HSCP RFCS and it was concluded that in general, there was a direct relationship between the specific energy required by the HSCP RFCS and the moisture content of the straw, counter-knife engagement and throughput. Further, it was also concluded that the specific energy requirements of the HSCP RFCS were more sensitive to counter-knife engagement when higher moisture content straw was processed. Depending on the type of chopper used, the specific energy required by the HSCP RFCS increased anywhere from 0.15 to 0.77 kWâh/tonne (or 22 to 61%) when the counter-knife engagement was increased from 0 to 100% (or fully removed to fully engaged). Again, depending on the type of chopper used, when the moisture content of the straw processed by the chopper increased from approximately 7 to 25% w.b. the specific energy required by the chopper increased by 0.14 to 0.96 kWâh/tonne (or 28 to 84%). The effect of throughput on the specific energy demand of the HSCP RFCS was dependent on the type of chopper used. For one of the choppers, an increase in throughput from 10.5 to 13.5 tonne/h caused the specific energy required by the HSCP RFCS to increase by 0.24 kWâh/tonne (or 35%); however for a different chopper, an increase in throughput from 12 to 13 tonne/h caused the specific energy demand of the HSCP RFCS to decrease by 0.16 kWâh/tonne (or 19%).</p> <p>The analytical model was validated using a subset of the data that were collected while employing each cutting device under field conditions and the data collected with the use of a custom-designed material properties test stand. The output of the analytical model fell within the 95% confidence interval of the measured power demand for each of the rotary feeding and cutting systems, and the analytical model was therefore deemed sufficiently accurate.</p> <p>Based on the analytical model, the total power demand of both the LSCP and HSCP rotary feeding and cutting systems was largely attributed to the power required to transport plant material. Further, the power required to transport the plant material along the sides of the counter-knives was much greater than the power required to transport the plant material along the rotor bed and along the leading edge of the tines. Because of the excessive power required to transport plant material along the sides of the counter-knives, three techniques were identified as potential strategies to decrease the power demand of the RFCS. The first technique involved removing half of the tines from the RFCS, and modifying the remaining tines to decrease the amount of plant material that is entrapped between sides of the counter-knives and the tines. The second technique involved coating the inside surface of the tines with a baked Teflon, to decrease the coefficient of friction between the plant material and the RFCS. The third technique involved reshaping the counter-knives, to decrease the surface area over which plant material was transported along the side of the counter-knives. According to the analytical model, employing any of the three techniques would result in the total power demand of the RFCS to decrease by 15 to 26%. </p> <p>For the HSCP RFCS, a stochastic model was developed to identify which of the four choppers tested during field trials would have the best performance when subjected to the same operating conditions. The chopper with the best performance was the WR chopper as its use resulted in the minimum geometric mean length of material exiting the combine harvester while also consuming the least amount of specific energy.</p>
737

Characterization of anthocyanidin-accumulating Lc-alfalfa for ruminants: nutritional profiles, digestibility, availability and molecular structures, and bloat characteristics

Jonker, Arjan 07 June 2011 (has links)
Grazing cattle on alfalfa (Medicago sativa L.) would be economically beneficial, but its rapid initial rate of protein degradation results in pasture bloat, low efficiency of protein utilization and excessive N pollution into the environment. Introducing a gene that stimulates the accumulation of mono/polymeric anthocyanidins might reduce the ruminal protein degradation rate and reduce bloat related foam stability. The overall objective of this thesis was to evaluate newly developed anthocyanidin-accumulating Lc-alfalfa progeny for nutritional properties (composition, site of degradation and molecular structure), environmental emissions and bloat characteristics. The objective of the first study was to determine survival and phytochemical and chemical profiles of Lc-alfalfa progeny (BeavLc1, RambLc3 and RangLc4) and their non-transgenic (NT) parental cultivars (Beaver, Rambler and Rangelander). Lc-alfalfa forage accumulated enhanced amounts of anthocyanidin, with an average concentration of 197.4 µg/g DM, while proanthocyanidin (i.e. condensed tannins) were not detected. Both of these metabolites were absent in the NT-parental varieties. Lc-alfalfa progeny had ~3 % less crude protein (CP) and ~3 % more carbohydrates (CHO), which resulted in their 11 g/kg lower N:CHO ratio compared with NT-alfalfa. Total rumen-degradable N:CHO ratio based on chemical analysis was 12.9 g/kg lower in Lc-alfalfa compared with NT-alfalfa. The objective of the second study was to evaluate in vitro degradation, fermentation and microbial-N partitioning of three forage color phenotypes [green, light purple-green (LPG) and purple-green (PG)] within Lc-progeny and their parental green NT-alfalfa varieties. Purple-green-Lc alfalfa accumulated more anthocyanidin than Green-Lc with LPG-Lc intermediate. Gas, methane and ammonia accumulation rates were slower for the two purple-Lc phenotypes compared with NT-alfalfa with Green-Lc intermediate. Effective degradable DM and N were lower in the three Lc-phenotypes compared with NT-alfalfa. Anthocyanidin concentration correlated negatively with gas and methane production rates and effective degradability of DM and N. The objectives of the third study were to evaluate in situ ruminal degradation characteristics and synchronization ratios, and to model protein availability to dairy cattle and net energy for lactation of three Lc-alfalfa progenies, BeavLc1, RambLc3 and RangLc4 and the cultivar AC Grazeland (selected for a low initial rate of ruminal degradation). Anthocyanidin accumulation was on average 163.4 ìg/g DM in the three Lc-progeny while AC Grazeland did not accumulate anthocyanidin. The basic chemical composition of the original samples, soluble and potentially degradable fractions and degradation characteristics of crude protein and carbohydrates were similar in Lc-alfalfa and AC Grazeland. The undegradable in situ crude protein and neutral detergent fiber fraction were, respectively, 1.3 %CP and 4.8 %CHO lower in the three Lc-progeny compared with AC Grazeland. Lc-alfalfa had a 0.34 MJ/kg DM higher net energy for lactation and tended to have a 11.9, 6.9 and 8.4 g/kg DM higher rumen degradable protein, rumen degraded protein balance and intestinal available protein, respectively, compared with AC Grazeland,. The hourly rumen degraded protein balance included an initial and substantial peak (over-supply) of protein relative to energy which was highest in RangLc4 and lowest in RambLc3. The hourly rumen degraded protein balance between 4 and 24 h was similar and more balanced for all four alfalfa populations. The objective of the fourth study was to determine foam formation and stability in vitro from aqueous leaf extracts of three Lc-alfalfa progeny (BeavLc1, RambLc3, RangLc4), parental NT-alfalfa and AC Grazeland (bloat reduced cultivar) harvested in the field at 07:00 or 18:00 h. Anthocyanidin accumulation averaged 247.5 ìg/g DM in the leaves of the three Lc-progeny. There was an interaction between population and harvest time for the foam parameters. Initial foam volume (0 min) and final foam volume (150 min) at 07:00 h were lower for AC Grazeland compared with all other treatments and lower for RangLc4 compared with the other two Lc-progeny at 0 min and NT-alfalfa at 150 min; while from the 18:00 h harvest, initial foam volume was larger for NT-alfalfa and final foam volume was larger for RambLc3 compared with AC Grazeland, BeavLc1 and RangLc4. Foam formation correlated positively (R = 0.30 to 0.44) with leaf DM content, leaf extract protein and ethanol-film content, spectroscopic vibration intensity due to all carbohydrates (CHOVI) and amide I:amide II ratio and negatively (R = -0.33 and -0.34; P<0.05) with á-helix:â-sheet ratio and amide I:CHOVI. Final foam volume correlated negatively (R = -0.53 to -0.25; P<0.05) with leaf extract pH, spectroscopic vibration intensity due to all protein structures, structural carbohydrates (SCVI) and lipids (CH2 and CH3 asymmetric stretching) and amide I:CHOVI ratio and corelated positively (R = 0.39 to 0.44; P<0.05) with CHOVI, amideI:SCVI ratio and CHOVI:SCVI ratio. In conclusion, all Lc-alfalfa progeny and phenotypes accumulated anthocyanidin in their forage. Lc-alfalfa progeny had lower protein and higher carbohydrate content which improved the nitrogen to carbohydrate balance compared to their parental NT-alfalfa cultivars. Rate of fermentation and effective degradability in vitro reduced for both purple anthocyanidin-accumulating Lc-alfalfa phenotypes compared with NT-alfalfa. Intestinal protein availability tended to be higher and net energy for lactation was higher from Lc-alfalfa progeny for dairy cattle compared with AC Grazeland. Foaming properties were reduced in Lc-alfalfa progeny compared with parental non-transgenic alfalfa but not compared with AC Grazeland. However, differences between the Lc-alfalfa progeny and other cultivars were small. Therefore, further increases in mono/polymeric anthocyanidin accumulation in alfalfa are required in order to develop an alfalfa cultivar with superior nutritional and bloat preventing characteristics compared to currently available alfalfa cultivars.
738

Field studies on the productivity of alfalfa (Medicago Sativa) grown from seed coated with selected Rhizobium Melitoti strains

Turley, Robert Harvey January 1980 (has links)
No description available.
739

Olfactory response of Lygus hesperus Knight to chemicals naturally found in alfalfa

Zaugg, Jerry Lynn, 1942- January 1971 (has links)
No description available.
740

Summer Slump in Alfalfa

Ottman, Michael, Mostafa, Ayman 01 1900 (has links)
3 pp. / “Summer slump” is a decline in growth of alfalfa usually beginning in July in areas where maximum daily temperature exceeds 100 °F, such as the low elevation deserts of Southwestern U.S (Fig. 1). In more temperate regions, there is a gradual decrease in alfalfa yield in successive harvests throughout the year, but the yield decline in the summer is not as sharp as in hot summer regions. The term summer slump has also been applied to reduction in growth of perennial cool season grasses such as tall fescue during the summer.

Page generated in 0.0312 seconds