531 |
Autoduality of the Hitchin system and the geometric Langlands programmeGroechenig, Michael January 2013 (has links)
This thesis is concerned with the study of the geometry and derived categories associated to the moduli problems of local systems and Higgs bundles in positive characteristic. As a cornerstone of our investigation, we establish a local system analogue of the BNR correspondence for Higgs bundles. This result (Proposition 4.3.1) relates flat connections to certain modules of an Azumaya algebra on the family of spectral curves. We prove properness over the semistable locus of the Hitchin map for local systems introduced by Laszlo–Pauly (Theorem 4.4.1). Moreover, we show that with respect to this Hitchin map, the moduli stack of local systems is étale locally equivalent to the moduli stack of Higgs bundles (Theorem 4.6.3) (with or without stability conditions). Subsequently, we study two-dimensional examples of moduli spaces of parabolic Higgs bundles and local systems (Theorem 5.2.1), given by equivariant Hilbert schemes of cotangent bundles of elliptic curves. Furthermore, the Hilbert schemes of points of these surfaces are equivalent to moduli spaces of parabolic Higgs bundles, respectively local systems (Theorem 5.3.1). The proof for local systems in positive characteristic relies on the properness results for the Hitchin fibration established earlier. The Autoduality Conjecture of Donagi–Pantev follows from Bridgeland–King–Reid’s McKay equivalence in these examples. The last chapter of this thesis is concerned with the con- struction of derived equivalences, resembling a Geometric Langlands Correspondence in positive characteristic, generalizing work of Bezrukavnikov–Braverman. Away from finitely many primes, we show that over the locus of integral spectral curves, the derived category of coherent sheaves on the stack of local systems is equivalent to a derived category of coherent D-modules on the stack of vector bundles. We conclude by establishing the Hecke eigenproperty of Arinkin’s autoduality and thereby of the Geometric Langlands equivalence in positive characteristic.
|
532 |
Orthogonal decompositions of the space of algebraic numbers modulo torsionFili, Paul Arthur 20 October 2010 (has links)
We introduce decompositions determined by Galois field and degree of the space of algebraic numbers modulo torsion and the space of algebraic points on an elliptic curve over a number field. These decompositions are orthogonal with respect to the natural inner product associated to the L² Weil height recently introduced by Allcock and Vaaler in the case of algebraic numbers and the inner product naturally associated to the Néron-Tate canonical height on an elliptic curve. Using these decompositions, we then introduce vector space norms associated to the Mahler measure. For algebraic numbers, we formulate L[superscript p] Lehmer conjectures involving lower bounds on these norms and prove that these new conjectures are equivalent to their classical counterparts, specifically, the classical Lehmer conjecture in the p=1 case and the Schinzel-Zassenhaus conjecture in the p=[infinity] case. / text
|
533 |
On Reductive Subgroups of Algebraic Groups and a Question of KülshammerLond, Daniel January 2013 (has links)
This Thesis is motivated by two problems, each concerning representations (homomorphisms)
of groups into a connected reductive algebraic group G over an algebraically
closed field k. The first problem is due to B. Külshammer and is to do with representations
of finite groups in G:
Let Γ be a finite group and suppose k has characteristic p. Let Γp be a
Sylow p-subgroup of Γ and let ρ : Γp → G be a representation. Are there
only finitely many conjugacy classes of representations ρ' : Γ → G whose
restriction to Γp is conjugate to ρ?
The second problem follows the work of M. Liebeck and G. Seitz: describe the representations
of connected reductive algebraic H in G.
These two problems have been settled as long as the characteristic p is large enough but
not much is known in the case where the characteristic p is a so called bad prime for G,
which will be the setting for our work.
At the intersection of these two problems lies another problem which we call the algebraic
version of Külshammer's question where we no longer suppose Γ is finite. This new
variation of Külshammer's question is interesting in its own right, and a counterexample
may provide insight into Külshammer's original question.
Our approach is to convert these problems into problems in the nonabelian 1-cohomology.
Let K be a reductive algebraic group, P a parabolic subgroup of G with Levi subgroup
L < P, V the unipotent radical of P. Let ρ₀ : K → L be a representation. Then the
representations ρ : K → P that equal ρ₀ under the canonical projection P → L are
in bijective correspondence with elements of the space of 1-cocycles Z¹(K,V ) where K
acts on V by xv = ρ₀(x)vρ₀(x)⁻¹. We can then interpret P- and G-conjugacy classes
of representations in terms of the 1-cohomology H¹(K,V ).
We state and prove the conditions under which a collection of representations from K to
P is a finite union of conjugacy classes in terms of the 1-cohomology in Theorem 4.22.
Unlike other approaches, we work directly with the nonabelian 1-cohomology. Even so,
we find that the 1-cocycles in Z¹(K,V ) often take values in an abelian subgroup of V
(Lemmas 5.10 and 5.11). This is interesting, for the question "is the restriction map of
1-cohomologies H¹(H,V) → H¹(U,V) induced by the inclusion of U in K injective?"
is closely linked to the question of Külshammer, and has positive answer if V is abelian
and H = SL₂k) (Example 3.2).
We show that for G = B4 there is a family of pairwise non-conjugate embeddings of
SL₂in G, a direction provided by Stewart who proved the result for G = F4. This is
important as an example like this is first needed if one hopes to find a counterexample
to the algebraic version of Külshammer's question.
|
534 |
Calabi-Yau threefolds and heterotic string compactificationDavies, Rhys January 2010 (has links)
This thesis is concerned with Calabi-Yau threefolds and vector bundles upon them, which are the basic mathematical objects at the centre of smooth supersymmetric compactifications of heterotic string theory. We begin by explaining how these objects arise in physics, and give a brief review of the techniques of algebraic geometry which are used to construct and study them. We then turn to studying multiply-connected Calabi-Yau threefolds, which are of particular importance for realistic string compactifications. We construct a large number of new examples via free group actions on complete intersection Calabi-Yau manifolds (CICY's). For special values of the parameters, these group actions develop fixed points, and we show that, on the quotient spaces, this leads to a particular class of singularities, which are quotients of the conifold. We demonstrate that, in many cases at least, such a singularity can be resolved to yield another smooth Calabi-Yau threefold, with different Hodge numbers and fundamental group. This is a new example of the interconnectedness of the moduli spaces of distinct Calabi-Yau threefolds. In the second part of the thesis we turn to a study of two new `three-generation' manifolds, constructed as quotients of a particular CICY, which can also be represented as a hypersurface in dP6 x dP6, where dP6 is the del Pezzo surface of degree six. After describing the geometry of this manifold, and especially its non-Abelian quotient, in detail, we show how to construct on the quotient manifolds vector bundles which lead to four-dimensional heterotic models with the standard model gauge group and three generations of particles. The example described in detail has the spectrum of the minimal supersymmetric standard model plus a single vector-like pair of colour triplets.
|
535 |
Categorical model structuresWilliamson, Richard David January 2011 (has links)
We build a model structure from the simple point of departure of a structured interval in a monoidal category — more generally, a structured cylinder and a structured co-cylinder in a category.
|
536 |
Zariski structures in noncommutative algebraic geometry and representation theorySolanki, Vinesh January 2011 (has links)
A suitable subcategory of affine Azumaya algebras is defined and a functor from this category to the category of Zariski structures is constructed. The rudiments of a theory of presheaves of topological structures is developed and applied to construct examples of structures at a generic parameter. The category of equivariant algebras is defined and a first-order theory is associated to each object. For those theories satisfying a certain technical condition, uncountable categoricity and quantifier elimination results are established. Models are shown to be Zariski structures and a functor from the category of equivariant algebras to Zariski structures is constructed. The two functors obtained in the thesis are shown to agree on a nontrivial class of algebras.
|
537 |
Logic and handling of algebraic effectsPretnar, Matija January 2010 (has links)
In the thesis, we explore reasoning about and handling of algebraic effects. Those are computational effects, which admit a representation by an equational theory. Their examples include exceptions, nondeterminism, interactive input and output, state, and their combinations. In the first part of the thesis, we propose a logic for algebraic effects. We begin by introducing the a-calculus, which is a minimal equational logic with the purpose of exposing distinct features of algebraic effects. Next, we give a powerful logic, which builds on results of the a-calculus. The types and terms of the logic are the ones of Levy’s call-by-push-value framework, while the reasoning rules are the standard ones of a classical multi-sorted first-order logic with predicates, extended with predicate fixed points and two principles that describe the universality of free models of the theory representing the effects at hand. Afterwards, we show the use of the logic in reasoning about properties of effectful programs, and in the translation of Moggi’s computational ¸-calculus, Hennessy-Milner logic, and Moggi’s refinement of Pitts’s evaluation logic. In the second part of the thesis, we introduce handlers of algebraic effects. Those not only provide an algebraic treatment of exception handlers, but generalise them to arbitrary algebraic effects. Each such handler corresponds to a model of the theory representing the effects, while the handling construct is interpreted by the homomorphism induced by the universal property of the free model. We use handlers to describe many previously unrelated concepts from both theory and practice, for example CSS renaming and hiding, stream redirection, timeout, and rollback.
|
538 |
Random Tropical CurvesHlavacek, Magda L 01 January 2017 (has links)
In the setting of tropical mathematics, geometric objects are rich with inherent combinatorial structure. For example, each polynomial $p(x,y)$ in the tropical setting corresponds to a tropical curve; these tropical curves correspond to unbounded graphs embedded in $\R^2$. Each of these graphs is dual to a particular subdivision of its Newton polytope; we classify tropical curves by combinatorial type based on these corresponding subdivisions. In this thesis, we aim to gain an understanding of the likeliness of the combinatorial type of a randomly chosen tropical curve by using methods from polytope geometry. We focus on tropical curves corresponding to quadratics, but we hope to expand our exploration to higher degree polynomials.
|
539 |
An algebraic study of modal operators on Heyting algebras with applications to topology and sheafificationMacnab, Donald Sidney January 1976 (has links)
No description available.
|
540 |
A Topological Uniqueness Result for the Special Linear GroupsOpalecky, Robert Vincent 08 1900 (has links)
The goal of this paper is to establish the dependency of the topology of a simple Lie group, specifically any of the special linear groups, on its underlying group structure. The intimate relationship between a Lie group's topology and its algebraic structure dictates some necessary topological properties, such as second countability. However, the extent to which a Lie group's topology is an "algebraic phenomenon" is, to date, still not known.
|
Page generated in 0.0699 seconds