• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 682
  • 323
  • 51
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1057
  • 348
  • 219
  • 209
  • 204
  • 167
  • 145
  • 144
  • 116
  • 101
  • 91
  • 84
  • 77
  • 76
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Le filtrage des bornes pour les contraintes cumulative et multi-inter-distance

Ouellet, Pierre 20 April 2018 (has links)
Ce mémoire traite de la résolution de problèmes d’ordonnancement à l’aide de la programmation par contraintes. Il s’intéresse principalement aux contraintes globales et particulièrement à la contrainte cumulative. Il passe en revue les règles permettant de la filtrer et les principaux algorithmes qui les appliquent. Il explique le Edge-Finder de Vilím et son arbre cumulatif. Il propose un algorithme plus performant et plus général pour appliquer les règles découlant du raisonnement énergétique. Le mémoire traite du cas particulier où toutes les tâches sont de durée identique. Pour modéliser efficacement ce type de problèmes, on y conçoit la contrainte multi-inter-distance. L’algorithme d’ordonnancement de López-Ortiz et Quimper est adapté pour réaliser un algorithme qui applique la cohérence de bornes. La contrainte multi-inter-distance s’avère efficace à résoudre le problème de séquençage des atterrissages d’avions du banc d’essai d’Artiouchine et Baptiste. / This thesis discusses how to solve scheduling problems using constraint programming. We study global constraints and particularly the Cumulative constraint. We survey its main filtering rules and their state-of-the-art filtering algorithms. We explain the Vilím’s Edge-Finder and its cumulative tree.We introduce a more efficient and more general algorithm that enforces the filtering rules from the energetic reasoning. We study the special case where all tasks have identical processing times. To efficiently model such problems, we introduce the Multi-Inter-Distance constraint. The scheduling algorithm by López-Ortiz and Quimper is adapted to produce a filtering algorithm enforcing bounds consistency. The constraint Multi-Inter-Distance is proved efficient to solve the runway scheduling problem on the benchmark by Artiouchine and Baptiste.
192

Inferring phenotypes from genotypes with machine learning : an application to the global problem of antibiotic resistance

Drouin, Alexandre 24 September 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2018-2019 / La compréhension du lien entre les caractéristiques génomiques d’un individu, le génotype, et son état biologique, le phénotype, est un élément essentiel au développement d’une médecine personnalisée où les traitements sont adaptés à chacun. Elle permet notamment d’anticiper des maladies, d’estimer la réponse à des traitements et même d’identifier de nouvelles cibles pharmaceutiques. L’apprentissage automatique est une science visant à développer des algorithmes capables d’apprendre à partir d’exemples. Ces algorithmes peuvent être utilisés pour produire des modèles qui estiment des phénotypes à partir de génotypes, lesquels peuvent ensuite être étudiés pour élucider les mécanismes biologiques sous-jacents aux phénotypes. Toutefois, l’utilisation d’algorithmes d’apprentissage dans ce contexte pose d’importants défis algorithmiques et théoriques. La haute dimensionnalité des données génomiques et la petite taille des échantillons de données peuvent mener au surapprentissage; le volume des données requiert des algorithmes adaptés qui limitent leur utilisation des ressources computationnelles; et finalement, les modèles obtenus doivent pouvoir être interprétés par des experts du domaine, ce qui n’est pas toujours possible. Cette thèse présente des algorithmes d’apprentissage produisant des modèles interprétables pour la prédiction de phénotypes à partir de génotypes. En premier lieu, nous explorons la prédiction de phénotypes discrets à l’aide d’algorithmes à base de règles. Nous proposons de nouvelles implémentations hautement optimisées et des garanties de généralisation adaptées aux données génomiques. En second lieu, nous nous intéressons à un problème plus théorique, soit la régression par intervalles, et nous proposons deux nouveaux algorithmes d’apprentissage, dont un à base de règles. Finalement, nous montrons que ce type de régression peut être utilisé pour prédire des phénotypes continus et que ceci mène à des modèles plus précis que ceux des méthodes conventionnelles en présence de données censurées ou bruitées. Le thème applicatif de cette thèse est la prédiction de la résistance aux antibiotiques, un problème de santé publique d’envergure mondiale. Nous démontrons que nos algorithmes peuvent servir à prédire, de façon très précise, des phénotypes de résistance, tout en contribuant à en améliorer la compréhension. Ultimement, nos algorithmes pourront servir au développement d’outils permettant une meilleure utilisation des antibiotiques et un meilleur suivi épidémiologique, un élément clé de la solution à ce problème. / A thorough understanding of the relationship between the genomic characteristics of an individual (the genotype) and its biological state (the phenotype) is essential to personalized medicine, where treatments are tailored to each individual. This notably allows to anticipate diseases, estimate response to treatments, and even identify new pharmaceutical targets. Machine learning is a science that aims to develop algorithms that learn from examples. Such algorithms can be used to learn models that estimate phenotypes based on genotypes, which can then be studied to elucidate the biological mechanisms that underlie the phenotypes. Nonetheless, the application of machine learning in this context poses significant algorithmic and theoretical challenges. The high dimensionality of genomic data and the small size of data samples can lead to overfitting; the large volume of genomic data requires adapted algorithms that limit their use of computational resources; and importantly, the learned models must be interpretable by domain experts, which is not always possible. This thesis presents learning algorithms that produce interpretable models for the prediction of phenotypes based on genotypes. Firstly, we explore the prediction of discrete phenotypes using rule-based learning algorithms. We propose new implementations that are highly optimized and generalization guarantees that are adapted to genomic data. Secondly, we study a more theoretical problem, namely interval regression. We propose two new learning algorithms, one which is rule-based. Finally, we show that this type of regression can be used to predict continuous phenotypes and that this leads to models that are more accurate than those of conventional approaches in the presence of censored or noisy data. The overarching theme of this thesis is an application to the prediction of antibiotic resistance, a global public health problem of high significance. We demonstrate that our algorithms can be used to accurately predict resistance phenotypes and contribute to the improvement of their understanding. Ultimately, we expect that our algorithms will take part in the development of tools that will allow a better use of antibiotics and improved epidemiological surveillance, a key component of the solution to this problem.
193

Une fonction de hachage basée sur la théorie du chaos

Langlois, Julie 18 April 2018 (has links)
Ce mémoire présente une brève introduction aux fonctions de hachage : les principales fonctions de hachage utilisées ainsi que leurs principales utilisations. Une nouvelle fonction de hachage, développée par Yong Wang , Xiaofeng Liao, Di Xao et Kwok-Wo Wong [1], sera introduite et une modification de cette dernière sera proposée. Cette fonction de hachage est basée sur un système dynamique chaotique, ce qui conduit à l'étude des exposants de Lyapunov.
194

Forêts Aléatoires PAC-Bayésiennes

Zirakiza, Brice 19 April 2018 (has links)
Dans ce mémoire de maîtrise, nous présentons dans un premier temps un algorithme de l'état de l'art appelé Forêts aléatoires introduit par Léo Breiman. Cet algorithme effectue un vote de majorité uniforme d'arbres de décision construits en utilisant l'algorithme CART sans élagage. Par après, nous introduisons l'algorithme que nous avons nommé SORF. L'algorithme SORF s'inspire de l'approche PAC-Bayes, qui pour minimiser le risque du classificateur de Bayes, minimise le risque du classificateur de Gibbs avec un régularisateur. Le risque du classificateur de Gibbs constitue en effet, une fonction convexe bornant supérieurement le risque du classificateur de Bayes. Pour chercher la distribution qui pourrait être optimale, l'algorithme SORF se réduit à être un simple programme quadratique minimisant le risque quadratique de Gibbs pour chercher une distribution Q sur les classificateurs de base qui sont des arbres de la forêt. Les résultasts empiriques montrent que généralement SORF est presqu'aussi bien performant que les forêts aléatoires, et que dans certains cas, il peut même mieux performer que les forêts aléatoires. / In this master's thesis, we present at first an algorithm of the state of the art called Random Forests introduced by Léo Breiman. This algorithm construct a uniformly weighted majority vote of decision trees built using the CART algorithm without pruning. Thereafter, we introduce an algorithm that we called SORF. The SORF algorithm is based on the PAC-Bayes approach, which in order to minimize the risk of Bayes classifier, minimizes the risk of the Gibbs classifier with a regularizer. The risk of Gibbs classifier is indeed a convex function which is an upper bound of the risk of Bayes classifier. To find the distribution that would be optimal, the SORF algorithm is reduced to being a simple quadratic program minimizing the quadratic risk of Gibbs classifier to seek a distribution Q of base classifiers which are trees of the forest. Empirical results show that generally SORF is almost as efficient as Random forests, and in some cases, it can even outperform Random forests.
195

Bornes PAC-Bayes et algorithmes d'apprentissage

Lacasse, Alexandre 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / L’objet principale de cette thèse est l’étude théorique et la conception d’algorithmes d’apprentissage concevant des classificateurs par vote de majorité. En particulier, nous présentons un théorème PAC-Bayes s’appliquant pour borner, entre autres, la variance de la perte de Gibbs (en plus de son espérance). Nous déduisons de ce théorème une borne du risque du vote de majorité plus serrée que la fameuse borne basée sur le risque de Gibbs. Nous présentons également un théorème permettant de borner le risque associé à des fonctions de perte générale. À partir de ce théorème, nous concevons des algorithmes d’apprentissage construisant des classificateurs par vote de majorité pondérés par une distribution minimisant une borne sur les risques associés aux fonctions de perte linéaire, quadratique, exponentielle, ainsi qu’à la fonction de perte du classificateur de Gibbs à piges multiples. Certains de ces algorithmes se comparent favorablement avec AdaBoost. / The main purpose of this thesis is the theoretical study and the design of learning algorithms returning majority-vote classifiers. In particular, we present a PAC-Bayes theorem allowing us to bound the variance of the Gibbs’ loss (not only its expectation). We deduce from this theorem a bound on the risk of a majority vote tighter than the famous bound based on the Gibbs’ risk. We also present a theorem that allows to bound the risk associated with general loss functions. From this theorem, we design learning algorithms building weighted majority vote classifiers minimizing a bound on the risk associated with the following loss functions : linear, quadratic and exponential. Also, we present algorithms based on the randomized majority vote. Some of these algorithms compare favorably with AdaBoost.
196

Étude d'un algorithme pour 2-SAT via les opérations de majorité-minorité généralisées

Kharrat, Ons 18 April 2018 (has links)
Les problèmes de satisfaction de contraintes sont parmi les problèmes fréquents qu'on trouve dans des domaines variés tels que la recherche opérationnelle et l'intelligence artificielle. Dans un problème de satisfaction de contraintes, on cherche à assigner aux variables des valeurs de telle sorte que toutes les contraintes fournies en entrée soient satisfaites. Chaque contrainte est une paire contenant un tuple de variables et une relation définissant les combinaisons de valeurs autorisées pour ce tuple. Ce problème est NP-complet, donc il est important d'identifier des cas particuliers résolubles en temps polynomial. Dans ce travail, on s'intéresse à une approche dite algébrique pour découvrir des classes de problèmes de satisfaction de contraintes traitables efficacement. On se base sur le résultat prouvé par Dalmau "en 2006" qui donne un algorithme polynomial pour une classe assez vaste de problèmes. On analyse et implémente un cas particulier de cet algorithme qui permet de résoudre des instances de 2-SAT. Cette implementation nous aidera à faire des expérimentations et à en apprendre plus sur la nature de l'algorithme de Dalmau et son comportement en pratique.
197

Développement d’un fantôme anthropomorphique pour validation inter et intra modalités d’algorithmes de déformation d’image

D. Vincent, Sharlie 20 April 2018 (has links)
Un des défis de la radiothérapie externe est d’adapter la planification de traitement à l’anatomie du patient tout au long de son traitement. Il est possible de faire de la thérapie adaptative grâce à l’imagerie de repositionnement en utilisant des algorithmes de recalage d’image. Les contours et la planification peuvent être conformes à l’anatomie du jour des patients au moment de leur fraction quotidienne. Il faut s’assurer préalablement de l’efficacité et la constance de ces algorithmes. Il est plus simple d’isoler des déformations spécifiques avec un fantôme anthropomorphique tridimensionnel que sur des images de patients. Le fantôme construit dans cette étude a permis de construire une banque d’images montrant 7 déformations différentes en intra et intermodalité Cette étude montre l’utilité du fantôme dans la validation et ainsi que l’efficacité de deux algorithmes de recalage d’image. Cette validation permet de cerner les lacunes de cette technologie pour éventuellement l’utiliser en clinique.
198

A stochastic point-based algorithm for Partially Observable Markov Decision Processes

Tobin, Ludovic 13 April 2018 (has links)
La prise de décision dans un environnement partiellement observable est un sujet d'actualité en intelligence artificielle. Une façon d'aborder ce type de problème est d'utiliser un modèle mathématique. Notamment, les POMDPs (Partially Observable Markov Decision Process) ont fait l'objet de plusieurs recherches au cours des dernières années. Par contre, résoudre un POMDP est un problème très complexe et pour cette raison, le modèle n'a pas été utilisé abondamment. Notre objectif était de continuer les progrès ayant été réalisé lors des dernières années, avec l'espoir que nos travaux de recherches seront un pas de plus vers l'application des POMDPs dans des applications d'envergures. Dans un premier temps, nous avons développé un nouvel algorithme hors-ligne qui, sur des problèmes tests, est plus performant que les meilleurs algorithmes existants. La principale innovation vient du fait qu'il s'agit d'un algorithme stochastique alors que les algorithmes traditionnels sont déterministes. Dans un deuxième temps, nous pouvons également appliquer cet algorithme dans des environnements en-lignes. Lorsque ceux-ci revêtent une certaine particularité, notre algorithme est beaucoup plus performant que la compétition. Finalement, nous avons appliqué une version simplifiée de notre algorithme dans le cadre du projet Combat Identification du RDDC-Valcartier. / Decision making under uncertainty is a popular topic in the field of artificial intelligence. One popular way to attack such problems is by using a sound mathematical model. Notably, Partially Observable Markov Processes (POMDPs) have been the subject of extended researches over the last ten years or so. However, solving a POMDP is a very time-consuming task and for this reason, the model has not been used extensively. Our objective was to continue the tremendous progress that has been made over the last couple of years, with the hope that our work will be a step toward applying POMDPs in large-scale problems. To do so, we combined different ideas in order to produce a new algorithm called SSVI (Stochastic Search Value Iteration). Three major accomplishments were achieved throughout this research work. Firstly, we developed a new offline POMDP algorithm which, on benchmark problems, proved to be more efficient than state of the arts algorithm. The originality of our method comes from the fact that it is a stochastic algorithm, in comparison with the usual determinist algorithms. Secondly, the algorithm we developed can also be applied in a particular type of online environments, in which this algorithm outperforms by a significant margin the competition. Finally, we also applied a basic version of our algorithm in a complex military simulation in the context of the Combat Identification project from DRDC-Valcartier.
199

Adaptation d'un algorithme de deuxième ordre pour l'analyse haute-résolution de courbes électrochimiques

Mathault, Jessy 17 January 2025 (has links)
Ce mémoire présente une nouvelle méthode d'analyse des courbes de voltampérométrie cyclique. Cette méthode utilise deux algorithmes distincts afin de permettre la caractérisation automatique et précise des pics gaussiens d'oxydoréduction qui sont liés à la concentration des molécules en solution. En premier lieu, des améliorations significatives sont apportées à un algorithme de suppression de la courbe de fond qui fonctionne par approximation polynomiale itérative. Avec les améliorations proposées, l'algorithme isole les pics d'oxydoréduction à partir des mesures de voltampérométrie cyclique automatiquement. La variation de l'amplitude des pics en fonction de la concentration est alors mieux conservée et les erreurs d'estimation sont diminuées par rapport à l'algorithme initial. Ensuite, le développement d'un algorithme qui permet de caractériser des pics gaussiens basé sur l'algorithme de deuxième ordre MUSIC est présenté. Cet algorithme est adapté de manière à caractériser avec une haute précision le nombre, la position, la largeur et l'amplitude des pics d'oxydoréduction. Finalement, les performances de cet algorithme sont comparées à celles d'autres algorithmes similaires à l'aide de courbes simulées et expérimentales. L'algorithme proposé permet une meilleure caractérisation des pics sans chevauchement ainsi que des pics déformés. Il permet aussi de diminuer la fréquence des fausses détections et d'obtenir une haute précision de la mesure de position, et ce même lorsque les signaux sont bruités. / This master's thesis describes a new method for analyzing cyclic voltammetry curves for an efficient peak detection and automatic baseline substraction. This method uses two distinct algorithms for a precise characterization of Gaussian redox peaks which are correlated with molecules' concentration in a solution. First, significant improvements are made to an existing algorithm that uses iterative polynomial approximations to suppress the baseline automatically from the voltammetric curves. With these enhancements, the algorithm extracts redox peaks from cyclic voltammetry measurements automatically and allows a better representation of the variation of peak's amplitude according to concentration. In addition, the approximation errors are reduced compared to the initial algorithm. Then, the development of an algorithm for characterizing Gaussian peaks based on the MUSIC second-order algorithm is presented. This algorithm is adapted to characterize the number, position, width and amplitude of redox peaks with high accuracy. Finally, the performances of this algorithm are compared with those of other similar algorithms using simulated and experimental curves. The suggested algorithm leads to a better characterization of non-overlapping peaks as well as distorted peaks. It also reduces the frequency of false detections and allows the precise measurement of peaks' positions in noisy signals.
200

Développement d'un algorithme permettant la prédiction des métastases à partir de mutations germinales et celles du clone fondateur chez des patients atteints du cancer

Milanese, Jean-Sébastien 17 May 2024 (has links)
Avec les constantes avancées du séquençage de nouvelle génération (NGS), la quantité de données disponibles devient massive. En parallèle, les méthodes de détection au cancer demeurent très spécifiques et peu efficaces. De plus, le taux de survie des patients est directement relié à la progression tumorale et par conséquent, aux méthodes de détection. Malgré des avancées technologiques très importantes dans les dernières années, le taux de mortalité du cancer ne cesse d’augmenter. L’importance de développer des nouvelles méthodes de détection applicables à tous les types de cancer devient une nécessité. Jusqu’à présent, il n’existe aucun modèle permettant d’utiliser le séquençage de nouvelle génération qui permet la prédiction de caractéristiques cancéreuse (ex : récurrence, résistance, etc.). Les sections suivantes démontrent la création d’un modèle utilisant des mutations somatiques et germinales pour prédire la récurrence et son applicabilité au travers de tous les types de cancers (et même différentes maladies). En utilisant des signatures géniques (combinaisons de gènes) spécifiques à chaque cancer, nous avons été en mesure d’obtenir une précision de 90% (et plus) pour le groupe où le cancer est récurrent. De nos connaissances, ceci est la première tentative de développement de modèle permettant de prédire le pronostic du patient en utilisant le NGS. Ceci amène un nouvel aspect pour la médecine personnalisée et spécialement pour le dépistage du cancer. / With the constant progress in neext generation sequencing, the quantity of data available for investigation becomes massive. In parallel, cancer detection methods and treatments remain very specific and barely accurate. Moreover, the patients survival rate are directly linked with tumoral progression and therefore, to cancer detection methods. Despite continual technological advances in recent years, the global cancer mortality rate keeps rising. The creation of new detection methods accessible to all cancer types becomes a necessity. As of now, there is no model available that using sequencing data to predict cancer traits (ex: recurrence, resistance, etc.). The following sections demonstrate the creation of such model using somatic and germline mutations to predict recurrence and its applicability across all cancer types (and even across different diseases). By using gene signatures specific to each cancer types, we were able to obtain an accuracy of 90% (and more) for the cohort where the cancer was recurrent. To our knowledge, this is the first attempt to develop a model that can predict the patient’s prognosis using genome sequencing data. This will affect future studies and improve personalized medicine as well as cancer detection methods.

Page generated in 0.0533 seconds