Spelling suggestions: "subject:"algoritmo multiobjetivo"" "subject:"algoritmo multiobjective""
1 |
Algoritmos evolutivos como estimadores de frequência e fase de sinais elétricos: métodos multiobjetivos e paralelização em FPGAs / Evolutionary algorithm as estimators of frequency and phase of electrical signal: multi objective methods and FPGA parallelizationSilva, Tiago Vieira da 19 September 2013 (has links)
Este trabalho propõe o desenvolvimento de Algoritmos Evolutivos (AEs) para estimação dos parâmetros que modelam sinais elétricos (frequência, fase e amplitude) em tempo-real. A abordagem proposta deve ser robusta a ruídos e harmônicos em sinais distorcidos, por exemplo devido à presença de faltas na rede elétrica. AEs mostram vantagens para lidar com tais tipos de sinais. Por outro lado, esses algoritmos quando implementados em software não possibilitam respostas em tempo-real para uso da estimação como relé de frequência ou Unidade de Medição Fasorial. O desenvolvimento em FPGA apresentado nesse trabalho torna possível paralelizar o cálculo da estimação em hardware, viabilizando AEs para análise de sinal elétrico em tempo real. Além disso, mostra-se que AEs multiobjetivos podem extrair informações não evidentes das três fases do sistema e estimar os parâmetros adequadamente mesmo em casos em que as estimativas por fase divirjam entre si. Em outras palavras, as duas principais contribuições computacionais são: a paralelização do AE em hardware por meio de seu desenvolvimento em um circuito de FPGA otimizado a nível de operações lógicas básicas e a modelagem multiobjetiva do problema possibilitando análises dos sinais de cada fase, tanto independentemente quanto de forma agregada. Resultados experimentais mostram superioridade do método proposto em relação ao estimador baseado em transformada de Fourier para determinação de frequência e fase / This work proposes the development of Evolutionary Algorithms (EAs) for the estimation of the basic parameters from electrical signals (frequency, phase and amplitude) in real time. The proposed approach must be robust to noise and harmonics in signals distorted, for example, due to the presence of faults in the electrical network. EAs show advantages for dealing with these types of signals. On the other hand, these algorithms when implemented in software cant produce real-time responses in order to use their estimations as frequency relay or Phasor Measurement Unit. The approach developed on FPGA proposed in this work parallelizes in hardware the process of estimation, enabling analyses of electrical signals in real time. Furthermore, it is shown that multi-objective EAs can extract non-evident information from the three phases of the system and properly estimate parameters even when the phase estimates diverge from each other. This research proposes: the parallelization of an EA in hardware through its design on FPGA circuit optimized at level of basic logic operations and the modeling of the problem enabling multi-objective analyses of the signals from each phase in both independent and aggregate ways. Experimental results show the superiority of the proposed method compared to an estimator based on Fourier transform for determining frequency and phase
|
2 |
Algoritmos evolutivos como estimadores de frequência e fase de sinais elétricos: métodos multiobjetivos e paralelização em FPGAs / Evolutionary algorithm as estimators of frequency and phase of electrical signal: multi objective methods and FPGA parallelizationTiago Vieira da Silva 19 September 2013 (has links)
Este trabalho propõe o desenvolvimento de Algoritmos Evolutivos (AEs) para estimação dos parâmetros que modelam sinais elétricos (frequência, fase e amplitude) em tempo-real. A abordagem proposta deve ser robusta a ruídos e harmônicos em sinais distorcidos, por exemplo devido à presença de faltas na rede elétrica. AEs mostram vantagens para lidar com tais tipos de sinais. Por outro lado, esses algoritmos quando implementados em software não possibilitam respostas em tempo-real para uso da estimação como relé de frequência ou Unidade de Medição Fasorial. O desenvolvimento em FPGA apresentado nesse trabalho torna possível paralelizar o cálculo da estimação em hardware, viabilizando AEs para análise de sinal elétrico em tempo real. Além disso, mostra-se que AEs multiobjetivos podem extrair informações não evidentes das três fases do sistema e estimar os parâmetros adequadamente mesmo em casos em que as estimativas por fase divirjam entre si. Em outras palavras, as duas principais contribuições computacionais são: a paralelização do AE em hardware por meio de seu desenvolvimento em um circuito de FPGA otimizado a nível de operações lógicas básicas e a modelagem multiobjetiva do problema possibilitando análises dos sinais de cada fase, tanto independentemente quanto de forma agregada. Resultados experimentais mostram superioridade do método proposto em relação ao estimador baseado em transformada de Fourier para determinação de frequência e fase / This work proposes the development of Evolutionary Algorithms (EAs) for the estimation of the basic parameters from electrical signals (frequency, phase and amplitude) in real time. The proposed approach must be robust to noise and harmonics in signals distorted, for example, due to the presence of faults in the electrical network. EAs show advantages for dealing with these types of signals. On the other hand, these algorithms when implemented in software cant produce real-time responses in order to use their estimations as frequency relay or Phasor Measurement Unit. The approach developed on FPGA proposed in this work parallelizes in hardware the process of estimation, enabling analyses of electrical signals in real time. Furthermore, it is shown that multi-objective EAs can extract non-evident information from the three phases of the system and properly estimate parameters even when the phase estimates diverge from each other. This research proposes: the parallelization of an EA in hardware through its design on FPGA circuit optimized at level of basic logic operations and the modeling of the problem enabling multi-objective analyses of the signals from each phase in both independent and aggregate ways. Experimental results show the superiority of the proposed method compared to an estimator based on Fourier transform for determining frequency and phase
|
3 |
Desenvolvimento de modelos e algoritmos sequenciais e paralelos para o planejamento da expansão de sistemas de transmissão de energia elétrica / Development of mathematical models, sequential and parallel algorithms for transmission expansion planningAldir Silva Sousa 16 March 2012 (has links)
O principal objetivo deste estudo é propor uma nova metodologia para lidar com o problema de Planejamento da Expansão de Redes de Transmissão de Energia Elétrica com Múltiplos Cenários de Geração (PERTEEG). Com a metodologia proposta neste trabalho almeja-se construir planos de expansão de redes de transmissão de energia elétrica que sejam capazes de, no menor custo de investimento possível, satisfazer às novas exigências dos sistemas elétricos modernos, tais como construção de redes de transmissão livres de congestionamento e robustas à incerteza em relação aos cenários de geração futuros. Através de estudos realizados na literatura do problema, verificou-se que novos modelos e metodologias de abordagem do PERTEEG se fazem necessários. Ao se modelar o PERTEEG visando construir redes de transmissão que contornem as incertezas em relação aos cenários de geração futuros e concomitantemente minimizar o custo de investimento para a expansão do sistema, o planejador se depara com um problema de otimização multiobjetivo. Existem na literatura da pesquisa operacional diversos algoritmos que visam lidar com problemas multiobjetivos. Nesta tese, foram aplicados dois desses algoritmos: Nondominated Sorting Genetic Algorithms-II (NSGA-II) e SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). Em primeira análise, se destacou uma das maiores dificuldade de lidar com o PERTEEG, a saber, o esforço computacional elevado. Por isso, vislumbrou-se que uma possível solução para contornar esta dificuldade esteja na computação paralela. Para se confirmar esta suspeita, nesta tese foram implementadas versões paralelas dos algoritmos sequenciais testados. A qualidade das soluções encontradas pelos algoritmos foram bastante superiores às soluções encontradas pelos algoritmos sequenciais. Neste trabalho também será mostrado que as soluções ótimas clássicas considerando somente o objetivo de m´mínimo custo são incapazes de atender às novas necessidades dos sistemas elétricos de potência. Testes computacionais foram realizados e analisados neste trabalho. Considerando as metodologias conhecidas na literatura para medição da qualidade das soluções encontradas por algoritmos multiobjetivo, se pode afirmar de que a proposta de abordagem do problema de PERTEEG pode ser viável tanto do ponto de vista de engenharia como do ponto de vista da computação matemática. / The main objective of this study is to propose a new methodology to deal with the long-term transmission system expansion planning with multiple generation dispatch scenarios problem (TEP-MDG). With the methodology proposed in this thesis we aim to build expansion plans with minimum investment cost and also capable of meeting the new demands of modern electrical systems, such as uncertainty about the future generation scenarios and congestion in the transmission systems. By modeling the TEP-MDG aiming to build transmission networks that circumvent the uncertainties regarding the future generation scenarios and simultaneously minimize the cost of investment for transmission networks expansion, the planner faces a multiobjective optimization problem. One can find various algorithms that aim to deal with multiobjective problems in the literature of operations research. In this thesis, we apply two of these algorithms: Nondominated Sorting Genetic Algorithms-II (NSGA-II) and SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). In a first analysis, we have found that the most critical issue with the TEP-MOG is the high computational demand. Therefore, in order to circumvent this difficulty we have implemented parallel versions of the sequential algorithms tested. In performed tests, the parallel algorithms have found solutions of superior quality than the solutions found by the sequential algorithms. In this thesis we also show that optimal solutions considering only the classical least cost objective are unable to meet the electric power systems new demands. Tests have been performed and analyzed in this work. By considering the methods known in the literature convinced to measure the quality of solutions found by multiobjective algorithms, we concluded that the proposed approach to TEP-MDG may be feasible from the point of view of both engineering and computational mathematics.
|
4 |
Desenvolvimento de modelos e algoritmos sequenciais e paralelos para o planejamento da expansão de sistemas de transmissão de energia elétrica / Development of mathematical models, sequential and parallel algorithms for transmission expansion planningSousa, Aldir Silva 16 March 2012 (has links)
O principal objetivo deste estudo é propor uma nova metodologia para lidar com o problema de Planejamento da Expansão de Redes de Transmissão de Energia Elétrica com Múltiplos Cenários de Geração (PERTEEG). Com a metodologia proposta neste trabalho almeja-se construir planos de expansão de redes de transmissão de energia elétrica que sejam capazes de, no menor custo de investimento possível, satisfazer às novas exigências dos sistemas elétricos modernos, tais como construção de redes de transmissão livres de congestionamento e robustas à incerteza em relação aos cenários de geração futuros. Através de estudos realizados na literatura do problema, verificou-se que novos modelos e metodologias de abordagem do PERTEEG se fazem necessários. Ao se modelar o PERTEEG visando construir redes de transmissão que contornem as incertezas em relação aos cenários de geração futuros e concomitantemente minimizar o custo de investimento para a expansão do sistema, o planejador se depara com um problema de otimização multiobjetivo. Existem na literatura da pesquisa operacional diversos algoritmos que visam lidar com problemas multiobjetivos. Nesta tese, foram aplicados dois desses algoritmos: Nondominated Sorting Genetic Algorithms-II (NSGA-II) e SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). Em primeira análise, se destacou uma das maiores dificuldade de lidar com o PERTEEG, a saber, o esforço computacional elevado. Por isso, vislumbrou-se que uma possível solução para contornar esta dificuldade esteja na computação paralela. Para se confirmar esta suspeita, nesta tese foram implementadas versões paralelas dos algoritmos sequenciais testados. A qualidade das soluções encontradas pelos algoritmos foram bastante superiores às soluções encontradas pelos algoritmos sequenciais. Neste trabalho também será mostrado que as soluções ótimas clássicas considerando somente o objetivo de m´mínimo custo são incapazes de atender às novas necessidades dos sistemas elétricos de potência. Testes computacionais foram realizados e analisados neste trabalho. Considerando as metodologias conhecidas na literatura para medição da qualidade das soluções encontradas por algoritmos multiobjetivo, se pode afirmar de que a proposta de abordagem do problema de PERTEEG pode ser viável tanto do ponto de vista de engenharia como do ponto de vista da computação matemática. / The main objective of this study is to propose a new methodology to deal with the long-term transmission system expansion planning with multiple generation dispatch scenarios problem (TEP-MDG). With the methodology proposed in this thesis we aim to build expansion plans with minimum investment cost and also capable of meeting the new demands of modern electrical systems, such as uncertainty about the future generation scenarios and congestion in the transmission systems. By modeling the TEP-MDG aiming to build transmission networks that circumvent the uncertainties regarding the future generation scenarios and simultaneously minimize the cost of investment for transmission networks expansion, the planner faces a multiobjective optimization problem. One can find various algorithms that aim to deal with multiobjective problems in the literature of operations research. In this thesis, we apply two of these algorithms: Nondominated Sorting Genetic Algorithms-II (NSGA-II) and SPEA2: Strength Pareto Evolutionary Algorithm (SPEA2). In a first analysis, we have found that the most critical issue with the TEP-MOG is the high computational demand. Therefore, in order to circumvent this difficulty we have implemented parallel versions of the sequential algorithms tested. In performed tests, the parallel algorithms have found solutions of superior quality than the solutions found by the sequential algorithms. In this thesis we also show that optimal solutions considering only the classical least cost objective are unable to meet the electric power systems new demands. Tests have been performed and analyzed in this work. By considering the methods known in the literature convinced to measure the quality of solutions found by multiobjective algorithms, we concluded that the proposed approach to TEP-MDG may be feasible from the point of view of both engineering and computational mathematics.
|
Page generated in 0.0869 seconds