• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amicable Pairs and Aliquot Cycles for Elliptic Curves Over Number Fields

Brown, Jim, Heras, David, James, Kevin, Keaton, Rodney, Qian, Andrew 01 January 2016 (has links)
Let E/ℚ be an elliptic curve. Silverman and Stange define primes p and q to be an elliptic, amicable pair if #E(Fp) = q and #E(Fq) = p. More generally, they define the notion of aliquot cycles for elliptic curves. Here, we study the same notion in the case that the elliptic curve is defined over a number field K. We focus on proving the existence of an elliptic curve E/K with aliquot cycle (p1,⋯, pn) where the pi are primes of K satisfying mild conditions.

Page generated in 0.0509 seconds