• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A cementitious binder from high-alumina slag generated in the steelmaking process

Adesanya, E. D. (Elijah D.) 03 December 2019 (has links)
Abstract About 4 Mt of ladle slag is generated in steelmaking processes in Europe per year, a large proportion of which (80%) is placed in landfills or stored. This pattern is expected to continue without further research for their valorisation due to increasing demand for quality steel products worldwide. Ladle slag (LS) produced in Finland possesses large amounts of calcium and aluminium and mineralogical phases which can exhibit cementitious capabilities and can be utilized in applications where expensive commercial cements are currently being used. The aim of this thesis is to investigate the properties of ladle slag in different activation pathways, including alkali activation and use as a hydraulic binder with gypsum. The results showed that ladle slag can be used alone as a precursor in alkali activation or as the sole binder or a co-binder with gypsum in hydraulic binding. Depending on the activation pathway, compressive strength between 35–92 MPa can be achieved after 28 days. The reaction properties of alkali activated ladle slag are characterized, and it is confirmed through X-ray diffraction (XRD) that the reaction product after alkali activation is mainly an x-ray amorphous (calcium aluminate silicate hydrate-like) phase. Characterization techniques (SEM, XRD, TGA and NMR) used to analyze the LS paste binder with just water showed the hydration products of ladle slag to be dicalcium aluminate octahydrate (C₂AH₈), tricalcium aluminate hexahydrate (C₃AH₆), gibbsite (AH₃) and stratlingite (C₂ASH₈) was also identified after a prolonged period of hydration. Furthermore, it was found that to minimize the conversion, the ideal water-to-binder ratio is 0.35. The conversion mechanism is reduced at this ratio and the strength is slightly affected. Another pathway that can be used to annul the conversion of calcium aluminate hydrates formed in LS paste is through the addition of gypsum to the LS paste system to produce an ettringite-rich binder (C₆A\(\bar{S}\)₃H₃₂). When ettringite is formed in place of calcium aluminate hydrates the strength increases, frost resistance is improved, and drying shrinkage is enhanced. Lastly, a potential application of ladle slag as a refractory material was also investigated. / Tiivistelmä Euroopassa syntyy vuosittain noin 4 Mt terästeollisuden sivutuotetta, JV-kuonaa, josta 80 % läjitetään tai kaatopaikoitetaan. Maailmanlaajuisesti syntyvän kuonan määrä tulee todennäköisesti kasvamaan laadukkaiden terästuotteiden ennustetun kysynnän kanssa. Tämän vuoksi kuonalle tulisi löytää hyötökäyttökohde, jota vältyttäisiin läjitykseltä. JV-kuona sisältääkin suuria määriä kalsiumia ja alumiinia sekä mineralogisia faaseja, joilla on sementtimäisiä ominaisuuksia. Näin kuonaa voitaisiin käyttää sovelluksissa, joissa tällä hetkellä käytetään kalliita kaupallisia sementtejä. Tämän väitöskirjan tarkoituksena oli tutkia JV-kuonan ominaisuuksia sementtimäisenä sideaineena alkali-aktivoinnissa sekä hydraulisena sideaineena yksinään että kipsin kanssa sekoitettuna. Väitöskirjan tulokset osoittivat, että JV-kuonaa voidaan käyttää prekursorina alkali-aktivoinnissa tai hydraulisena sideaineena pelkästään veden kanssa tai yhdessä kipsin ja veden kanssa. Saavutetut puristuslujuuset vaihtelivat 35 ja 92 MPa:n välillä, jotka vastaavat normaalin ja erityislujan betonin lujuuksia. JV-kuonan reaktiotuotteet alkali-aktivonnin jälkeen analysoitiin XRD- ja FTIR-analyyseillä. Tuloksista nähtiin, että alkali-aktivoinnin jälkeen reaktiotuote on sementin kaltainen kalsium-aluminatti-silikaati-hydraati (C-A-S-H) -tyyppinen faasi. XRD-, SEM-, TGA- ja NMR-analyysit osoittivat JV-kuonan hydrataatiotuotteiden olevan erilaisia kalsium-aluminaattihydraatteja (C₂AH₈, C₃AH₆, AH₃ ja C₂ASH₈). Tämän vuoksi työssä tutkittiin eri vesi–kuona-suhteita, ja havaittiin, että kun käytetään alhaista kuona-vesi –suhdetta (0,35), reaktiotuoteiden muutos vähenee ja lujuus paranee. Toinen tapa, jolla voidaan estää reaktiotuotteiden muuttuminen, on kipsin lisäys: lisäämällä kipsiä tuotetaan runsaasti ettringiittiä (C₆A\(\bar{S}\)₃H₃₂). Kun ettringiittiä muodostuu kalsium-aluminaattihydraattien sijaan, lujuus kasvaa, pakkaskestävyys paranee ja kuivumiskutistuma paranee. Väitöskirjan viimeisessä osiossa tutkittiin JV-kuonan mahdollista käyttöä tulenkestävänä materiaalina ja huomattiin, että sen tulenkestävyysominaisuudet vaihtelevat käytetyn aktivointityypin mukaan.
2

Stabilization of sulphidic mine tailings by different treatment methods:heavy metals and sulphate immobilization

Kiventerä, J. (Jenni) 22 October 2019 (has links)
Abstract Millions of tons of mine tailings are generated worldwide annually. Since many valuable metals such as Ag, Cu, Pb, Zn, Au and Ni are usually incorporated into sulphidic minerals, a large proportion of the tailings generated contain high amounts of sulphates and heavy metals. Some of these tailings are used as paste backfill material at mining sites, but large amounts are still being deposited into the tailings dams under water coverage. Sulphidic minerals are stable underground but after mining of the ore and several processing steps these minerals can be oxidized when they come into contact with water and air. This oxidation generates acid and thus reduces the pH of the surrounding environment. Furthermore, the heavy metals present in the mine tailings can be leached into the environment. This phenomenon, called Acid Mine Drainage (AMD), is one of the most critical environmental issues related to the management of sulphidic-rich tailings. Since AMD generation can still occur hundreds of years after closure of the mine, the mine tailings need stable, sustainable and economically viable management methods in order to prevent AMD production in the long term. The aim of this PhD thesis was to study various solidification/stabilization (S/S) methods for the immobilization of sulphidic mine tailings. The main focus was to develop a suitable chemical environment for achieving effective heavy metal (mainly arsenic) and sulphate immobilization while simultaneously ensuring good mechanical properties. Three treatment methods were tested: alkali activation, stabilization using hydrated lime (Ca(OH)2) and blast furnace slag (GBFS), and calcium sulphoaluminate-belite (CSAB) cement stabilization. The mine tailings used in this study contained large amounts of sulphates and heavy metals such as Cr, Cu, Ni, Mn, Zn, V and As. The leaching of arsenic and sulphates from powdered tailings exceeded the legal limits for regular and inert waste. All treatment methods were found to generate a hardened matrix that was suitable for use as a backfilling or construction material, but the calcium-based binding system was the most suitable for effective immobilization of all the heavy metals (including arsenic) and the sulphates. Precipitation in the form of calcium sulphates/calcium arsenate and the formation of ettringite are the main stabilization methods employed in calcium-based stabilization/solidification (S/S) systems. Some evidence of physical encapsulation occurring simultaneously with chemical stabilization was noted. These results can be exploited further to develop more sustainable mine tailing management systems for use in the future. The tailings could be stored in a dry landfill area instead of in tailing dams, and in this way a long-term decrease in AMD generation could be achieved, together with a high potential for recycling. / Tiivistelmä Monet arvometallit kuten kulta, kupari ja nikkeli ovat sitoutuneena sulfidipitoisiin mineraaleihin. Louhittaessa ja rikastettaessa näitä sulfidimineraaleja syntyy miljoonia tonneja sulfidipitoisia rikastushiekkoja vuosittain. Rikastushiekat voivat sisältää myös runsaasti erilaisia raskasmetalleja. Osa rikastushiekoista hyödynnetään kaivostäytössä, mutta suurin osa rikastushiekoista läjitetään edelleen ympäristöön rikastushiekka-altaisiin veden alle. Kun sulfidipitoinen malmi kaivetaan ja käsitellään, sulfidiset mineraalit hapettuvat ollessaan kosketuksissa veden ja hapen kanssa. Hapettuessaan ne muodostavat rikkihappoa, laskien ympäristön pH:ta jolloin useimmat raskasmetallit liukenevat ympäristöön. Muodostuvia happamia kaivosvesiä voi syntyä vielä pitkään kaivoksen sulkemisen jälkeen ja ovat näin ollen yksi suurimmista kaivosteollisuuteen liittyvistä ympäristöongelmista. Lisäksi suuret rikastushiekka-altaat voivat aiheuttaa vaaraa myös ihmisille, mikäli altaan rakenteet pettävät. Rikastushiekkojen kestäviä ja ympäristöystävällisiä varastointimenetelmiä täytyy kehittää, jotta näitä ongelmia voidaan tulevaisuudessa ehkäistä. Tässä työssä tutkittiin menetelmiä, joilla kultakaivoksella syntyvät sulfidipitoiset vaaralliseksi jätteeksi luokitellut rikastushiekat saataisiin stabiloitua tehokkaasti. Työssä keskityttiin kolmeen erilaiseen menetelmään: alkali-aktivointiin, stabilointiin kalsiumhydroksidin ja masuunikuonan avulla ja stabilointiin CSAB sementin avulla. Valmistettujen materiaalien mekaanisia ja kemiallisia ominaisuuksia arvioitiin. Tavoitteena oli ymmärtää, miten eri menetelmät soveltuvat raskasmetallien (erityisesti arseenin) ja sulfaattien sitoutumiseen ja mikä on eri komponenttien rooli reaktioissa. Alkali-aktivoimalla rikastushiekkaa sopivan sidosaineen kanssa saavutettiin hyvät mekaaniset ominaisuudet ja useimmat haitta-aineet sitoutuivat materiaaliin. Ongelmia aiheuttivat edelleen sulfaatit ja arseeni. Kalsiumpohjaiset menetelmät sitoivat raskasmetallit (myös arseenin) ja sulfaatit tehokkaimmin. Sulfaatit ja arseeni saostuivat muodostaen niukkaliukoisia komponentteja kalsiumin kanssa. Samanaikaisesti rakenteeseen muodostui ettringiittiä, jolla on tutkitusti hyvä kyky sitoa erilaisia raskasmetalleja rakenteeseensa. Raskasmetallit myös kapseloituivat rakenteen sisään. Työn tuloksia voidaan hyödyntää, kehitettäessä rikastushiekkojen turvallista varastointia. Kun materiaalille saavutetaan riittävän hyvä lujuus ja kemiallinen stabiilius, rikastushiekat voitaisiin läjittää tulevaisuudessa kuivalle maalle altaan sijaan. Näin vältyttäisiin rikastushiekka-altaiden rakentamiselta ja voitaisiin vähentää happamien kaivosvesien muodostumista pitkällä ajanjaksolla. Saavutettujen tulosten perusteella rikastushiekkoja voidaan mahdollisesti tulevaisuudessa hyödyntää myös erilaisissa betonin tapaisissa rakennusmateriaaleissa.

Page generated in 0.0598 seconds