• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards Improved Practicality in Iron-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions:

Wong, Alexander Shun-Wai January 2021 (has links)
Thesis advisor: Jeffery A. Byers / This dissertation will discuss the development of Suzuki-Miyaura cross-coupling reactions catalyzed by iron-based complexes with an emphasis on addressing limitations to their practical application in industrial contexts. Chapter 1 will provide an overview of the development of the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction and key factors which have enabled its prevalent use in various industries, with a comparison to how those factors have limited similar development of iron-catalyzed analogues. Chapter 2 will discuss the initial discovery and subsequent development of a series of iron-based precatalysts for the cross-coupling reaction of unactivated aryl boronic esters and alkyl halides. Chapter 3 will discuss the development and validation of a bench-stable iron(III)-based complex capable of catalyzing the Suzuki-Miyaura cross-coupling reaction between unactivated aryl boronic esters and alkyl halides. To conclude, Chapter 4 will discuss the ability of iron-based complexes to participate in the Suzuki-Miyaura cross-coupling reaction with alkyl tosylate electrophiles and its implications for harnessing the ability of iron catalysis to operate under different mechanistic manifolds. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.0417 seconds