• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 1
  • Tagged with
  • 20
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

α- and β-Amino C−H Functionalization through Cooperative Catalysis:

Zhang, Bochao January 2020 (has links)
Thesis advisor: Masayuki Wasa / When a catalytic reaction is carried out between two reactants, usually only onereactant is activated by a single catalyst while the other component is pre-activated so that the sluggish reactivity was compensated. In order to broaden the substrate scope, the development of cooperative catalysts that can generate both electrophilic and nucleophilic species in situ represents a compelling research objective. This thesis is focused on the development of cooperative catalyst systems and their applications to α- and β-amino C−H bond functionalization. In the first chapter of this thesis, a brief summary of the present cooperative catalysts will be discussed. In the second chapter, the development of cooperative acid/acid catalysts for the α-alkynylation of N-alkylamines will be discussed. Typically, catalytic α-amino C−H alkynylation process is carried out under oxidative conditions, and enantioselective reactions are confined to tetrahydroisoquinoline derivatives. We disclose a strategy for the union of N-alkylamines and trimethylsilyl alkynes through cooperative actions of two Lewis acids, B(C 6 F 5 ) 3 and a Cu-based complex without the use of oxidants. We proposed that various propargylamines can be synthesized through the reaction between a L n Cu−alkynyl complex and an iminium ion that are generated in situ. Furthermore, the utility of this protocol was demonstrated by applications in late stage α-alkynylation of bioactive amines and stereoselective synthesis of propargylamines. In the third chapter of this thesis, catalytic and regioselective deuteration of β-amino C−H bonds in an array of N-alkylamine-based pharmaceutical compounds will be described. Isotopic labeling of β-amino C−H bond is promoted by the cooperative action of Lewis acidic B(C 6 F 5 ) 3 and Brønsted basic N-alkylamine, converting a bioactive amine first into an iminium ion and then the corresponding enamine. Meanwhile, the acid/base catalysts can also promote the dedeuteration of acetone-d 6 to afford a deuterated ammonium ion and a boron enolate. Ensuing deuteration of the enamine by deuterated ammonium ion followed by borohydride reduction leads to the formation of β-deuterated bioactive amines with up to 99% deuterium incorporation. / Thesis (MS) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

Hydroalkynylation of Oxocarbenium Intermediates via Au(I) Catalysis

Smith, Courtney Smith 28 February 2017 (has links)
Au(I) catalysis has recently emerged as a powerful tool for the realization of a broad range of organic transformations. Despite this rapid development, attaining selectivity and maintaining catalyst stability remain significant challenges. Rational ligand design, such as the employment of NHC or TA ligands, has been used to confront these issues. This thesis focuses on the use of Au(I) catalysts bearing these ligands for the selective hydroalkynylation of enol ethers. By employing a TA-Au stabilized catalyst, [(OAr)3PAu(TA-H)]OTf, the intermolecular hydroalkynylation of enol ethers, a substrate that is well-known to promote decomposition of the gold cation, was efficiently achieved. As an expansion of this reaction, the NHC-Au catalyst, IPrAuNTf2, was utilized in a multicomponent system to promote the tandem hydroalkynylation of enol ethers formed in-situ via the cycloisomerization of alkynols. Further exploration of this tandem reaction revealed that IPrAuNTf2 catalyzes a cascade ring-expansion of the alkynylated heterocycles to form oxepines. The mechanistic and synthetic insight obtained from these developed reactions has the potential to be applied towards future studies in gold catalysis.
3

Investigations towards the design, synthesis and application of new sulfur-based transfer reagents

Waldecker, Bernd 02 May 2019 (has links)
No description available.
4

Reações de alquinilação eletrofílica promovida por reagentes de iodo hipervalente / Electrophilic alkynylation reactions promoted by hypervalent iodine reagent

Teodoro, Bruno Vinicius Motta 08 January 2019 (has links)
Na primeira parte desta tese são apresentados os resultados referentes ao desenvolvimento de uma metodologia de α-alquinilação eletrofílica de aldeídos com o reagente de iodo hipervalente TMS-EBX, empregando NaHMDS como base e TBAF. Aldeídos acíclicos foram submetidos a esta transformação e 9 exemplos de álcoois homopropargílicos foram obtidos em rendimentos de 50-81%, após uma etapa de redução com NaBH4. A transformação desenvolvida revelou-se aplicável também com o reagente de iodo hipervalente Ph-EBX e 2 exemplos foram obtidos em 24 e 40% de rendimento. O álcool homopropargílico precursor de um inibidor da bactéria que produz a toxina botulínica foi preparado em uma escala de 5 mmol sem a necessidade de alterar as condições reacionais já otimizadas. Na segunda parte desta tese são apresentados os resultados referentes ao desenvolvimento de uma metodologia para a síntese de cetonas cíclicas e 2-cromanonas α-alquinil-β-substituídas por meio de uma sequência de adição 1,4/alquinilação eletrofílica empregando cumarinas e enonas como material de partida, utilizando o reagente de iodo hipervalente TMS-EBX. Os enolatos foram gerados com sucesso a partir de uma reação de adição 1,4 catalisada por cobre utilizando complexos de alumínio e reagentes de Grignard como fontes nucleofílicas. No total foram obtidos 17 exemplos em 34-89% de rendimento e em alta diastereosseletividade. Realizamos três modificações estruturais visando aumentar a complexidade estrutural dos produtos sintetizados. A reação Click, rea- ção de Sonogashira e redução mediada por NaBH4 foram aplicadas com sucesso. Por fim, na terceira parte desta tese são apresentados os resultados preliminares referentes ao desenvolvimento de uma metodologia de síntese de furanos a partir da acetofenona e do reagente de iodo hipervalente Ph-EBX, empregando NaHMDS comoviii base. A acetofenona foi submetida a esta transformação e uma mistura de furanos di- e trissubstituídos foram obtidos em 49% de rendimento. Um experimento controle demonstrou que a alquinilação do ânion terc-butóxido, em uma reação extremamente rápida, é a principal via de consumo do Ph-EBX e o composto (terc-butoxietinil)benzeno foi obtido em 92% de rendimento. Esta reação lateral é a principal responsável pelo baixo rendimento da reação de síntese dos furanos. / In the first part of this work are presented the results relative to the development of a methodology of α-electrophilic alkynylation of aldehydes with the hypervalent iodine reagent TMS-EBX, employing NaHMDS as base and TBAF. Acyclic aldehydes were submitted to this transformation and 9 examples of homopropargylic alcohols were obtained in 50-81% yield, after a reduction step with NaBH4. The developed transformation proved to be works also with the hypervalent iodine reagent Ph-EBX and 2 examples were obtained in 24 and 40% yield. The homopropargylic alcohol precursor of an inhibitor of bacteria that produces a botulinic toxin was prepared at a 5 mmol scale without change the reaction condition already optimized. In the second part of the thesis are presented the results relative to the development of a methodology for the synthesis of cyclic ketones and 2-chromanones α-alkynyl-β-substituted by the1,4-addition/electrophilic alkynylation sequence using coumarins and enones as a starting material and the hypervalent iodine reagent TMS-EBX. The enolates were generated with success from a Cu-catalyzed 1,4 addition using aluminum complexes and Grignard reagents as nucleophilic source. In total 17 examples were obtained in 34-89% yield and high diastereoselectivity. We carried out three structural modification aiming to increase the complexity of the products synthesized. Click reaction, Sonogashira reaction and reduction promoted by NaBH4 were applied with success. Finally, in the third part of the thesis are presented the preliminary results relative to the development of a methodology for synthesis of furans from acetophenone and the hypervalent iodine reagent Ph-EBX, using NaHMDS as a base. Acetophenone was submitted to this transformation and only one example was obtained in 49% yield in a mixture of di- and trisubstituted furans. A control experimentx showed that the alkynylation of tert-butoxide anion, in an extremely fast reaction, is the main path of consumption of the Ph-EBX reagent and the compound (tert-butoxyethynyl)benzene was obtained in 92% yield. This side reaction is the main responsible for the low yield of the reaction of synthesis of furans.
5

Asymmetric Synthesis using 3,3'-Disubstituted Binaphthol-modified Boronates

Wu, Tao January 2006 (has links)
A number of 3,3'-disubstituted binaphthol-modified allylboronates (<strong>2. 42a-m</strong>) were prepared from the reaction between triallylborane and the corresponding 3,3'-disubstituted binaphthols. These chiral allylboronates could allylate carbonyl compounds to produce chiral homoallylic alcohols in high chemical and optical yields. Chiral ligands were readily recycled through simple acid-base extraction. Among all allylboronates tested, 3,3'-(CF<sub>3</sub>)<sub>2</sub>-BINOL-modified allylboronate (<strong>2. 42b</strong>) is an especially effective reagent that allows for allylborations of both aldehydes and ketones in high enantioselectivities (up to 98% yield and >99% <em>ee</em>). Reagent <strong>2. 42b</strong> represents one of the best allylation reagents for carbonyl compounds developed thus far. <br /><br /> Allylations of cyclic imines using 3,3'-disubstituted binaphthol-modified allylboronates (<strong>2. 42a-j</strong>) were carried out at low temperature. 3,3'-Bis[3,5-(CF<sub>3</sub>)<sub>2</sub>-C<sub>6</sub>H<sub>3</sub>]-binaphthol-modified allylboronate (<strong>2. 42j</strong>) gave the best enantioselectivities (91% <em>ee</em> to >99% <em>ee</em>) in the allylation of a variety of cyclic imines. This methodology represents the first successful enantioselective allylboration of cyclic imines. The versatility of the allylation products (chiral a-allyl cyclic amines) was demonstrated through efficient total syntheses of several naturally occurring alkaloids such as coniine, crispine A and corynantheidol. <br /><br /> 3,3'-Disubstituted binaphthol-modified alkynylboronates (<strong>4. 47a-g</strong>) were synthesized according to a reported procedure. It was found that these chiral alkynylboronates add to <em>N</em>-acylaldimines in an enantioselective manner to produce chiral propargylamides in excellent yields and enantioselectivities. Up to >99% <em>ee</em> could be obtained with 3,3'-diphenyl binaphthol-modified alkynylboronates (<strong>4. 47f</strong>). This represents the first direct asymmetric synthesis of chiral propargylamides. Using this methodology, an antitubulin agent (-)-<em>N</em>-acetylcolchinol (AstraZeneca® ZD6126 phenol) was synthesized in 4 steps from commercially available 3-hydroxybenzaldehyde. <br /><br /> During a study of the asymmetric conjugate alkynylation of enones via chiral alkynylboronates, it was found that achiral dialkyl alkynylboronates could add to enones enantioselectively in the presence of catalytic amounts of chiral bidentate ligands (such as 3,3'-disubstituted binaphthols, diisopropyl tartrate and activated chiral amino acids). A catalytic cycle driven by "ligand-exchange" processes was proposed to rationalize this asymmetric induction. This is the first reported example of an asymmetric reaction that is promoted by a catalytic amount of an exchangeable chiral ligand on the boron reagent. More importantly, we have demonstrated a proof of principle that ligand exchange with boronates can be sufficiently fast that catalytic amounts of chiral ligands can be used to effect high levels of stereoselectivity. This catalytic protocol can potentially be applied to other asymmetric reactions providing the following three requirements are met: (1) the starting achiral boronate does not react with the electrophile (no background reaction); (2) the chiral boronate reacts with the electrophile and (3) ligand exchange or transesterification occurs under the reaction conditions. Potential applications of this principle include asymmetric allylboration, hydroboration, aldol reaction and reduction, just to name a few.
6

Asymmetric Synthesis using 3,3'-Disubstituted Binaphthol-modified Boronates

Wu, Tao January 2006 (has links)
A number of 3,3'-disubstituted binaphthol-modified allylboronates (<strong>2. 42a-m</strong>) were prepared from the reaction between triallylborane and the corresponding 3,3'-disubstituted binaphthols. These chiral allylboronates could allylate carbonyl compounds to produce chiral homoallylic alcohols in high chemical and optical yields. Chiral ligands were readily recycled through simple acid-base extraction. Among all allylboronates tested, 3,3'-(CF<sub>3</sub>)<sub>2</sub>-BINOL-modified allylboronate (<strong>2. 42b</strong>) is an especially effective reagent that allows for allylborations of both aldehydes and ketones in high enantioselectivities (up to 98% yield and >99% <em>ee</em>). Reagent <strong>2. 42b</strong> represents one of the best allylation reagents for carbonyl compounds developed thus far. <br /><br /> Allylations of cyclic imines using 3,3'-disubstituted binaphthol-modified allylboronates (<strong>2. 42a-j</strong>) were carried out at low temperature. 3,3'-Bis[3,5-(CF<sub>3</sub>)<sub>2</sub>-C<sub>6</sub>H<sub>3</sub>]-binaphthol-modified allylboronate (<strong>2. 42j</strong>) gave the best enantioselectivities (91% <em>ee</em> to >99% <em>ee</em>) in the allylation of a variety of cyclic imines. This methodology represents the first successful enantioselective allylboration of cyclic imines. The versatility of the allylation products (chiral a-allyl cyclic amines) was demonstrated through efficient total syntheses of several naturally occurring alkaloids such as coniine, crispine A and corynantheidol. <br /><br /> 3,3'-Disubstituted binaphthol-modified alkynylboronates (<strong>4. 47a-g</strong>) were synthesized according to a reported procedure. It was found that these chiral alkynylboronates add to <em>N</em>-acylaldimines in an enantioselective manner to produce chiral propargylamides in excellent yields and enantioselectivities. Up to >99% <em>ee</em> could be obtained with 3,3'-diphenyl binaphthol-modified alkynylboronates (<strong>4. 47f</strong>). This represents the first direct asymmetric synthesis of chiral propargylamides. Using this methodology, an antitubulin agent (-)-<em>N</em>-acetylcolchinol (AstraZeneca® ZD6126 phenol) was synthesized in 4 steps from commercially available 3-hydroxybenzaldehyde. <br /><br /> During a study of the asymmetric conjugate alkynylation of enones via chiral alkynylboronates, it was found that achiral dialkyl alkynylboronates could add to enones enantioselectively in the presence of catalytic amounts of chiral bidentate ligands (such as 3,3'-disubstituted binaphthols, diisopropyl tartrate and activated chiral amino acids). A catalytic cycle driven by "ligand-exchange" processes was proposed to rationalize this asymmetric induction. This is the first reported example of an asymmetric reaction that is promoted by a catalytic amount of an exchangeable chiral ligand on the boron reagent. More importantly, we have demonstrated a proof of principle that ligand exchange with boronates can be sufficiently fast that catalytic amounts of chiral ligands can be used to effect high levels of stereoselectivity. This catalytic protocol can potentially be applied to other asymmetric reactions providing the following three requirements are met: (1) the starting achiral boronate does not react with the electrophile (no background reaction); (2) the chiral boronate reacts with the electrophile and (3) ligand exchange or transesterification occurs under the reaction conditions. Potential applications of this principle include asymmetric allylboration, hydroboration, aldol reaction and reduction, just to name a few.
7

C-H Activation for Sustainable Synthesis: Base Metal- and Electro-Catalysis

Sauermann, Nicolas 03 July 2018 (has links)
No description available.
8

C−H Alkylations and Alkynylations Using Ruthenium, Nickel and Manganese Complexes

Ruan, Zhixiong 10 October 2017 (has links)
No description available.
9

Functionalization of alpha- and beta-Amino C-H Bonds Using Cooperative Catalysis:

Zhang, Yuyang January 2020 (has links)
Thesis advisor: Masayuki Wasa / Cooperative catalysis has been developed for transformations where at least two reactants are activated in situ by acid or base sensitive catalysts to form the reactive species and subsequent bond formation leads to desired product. This thesis focuses on the development of ɑ-amino C-H alkynylation and β-amino C-H deuteration through the use of cooperative catalysts. In the alkynylation reaction, N-alkylamines and trimethylsilyl substituted alkynes were used to synthesize propargylamines by the cooperative actions of Lewis acid catalysts, B(C₆F₅)₃ and copper complex. The reaction between in situ generated iminium ion and copper alkyne complex afforded the product. The method is applicable to the late-stage functionalization of bioactive amine drug molecules and has been shown to tolerate different functional groups on trimethylsilyl-substituted alkynes. In addition, an enantioselective and diastereoselective version of the method was also developed through the use of chiral copper complex. In the second part, selective deuteration of β-amino C-H bonds of various acylic and cyclic alkyl amines will be introduced. B(C₆F₅)₃ and Brønsted base work cooperatively to afford enamine and deuterated ammonium ion as reactive intermediate. Deuteration of enamine at the β-position and hydride reduction at the ɑ-position gave the selectively deuterated products. Acetone-d₆ was the found to be the optimal source of deuterium. This method was able to incorporate deuterium atoms up to 99% and can be applied in a gram scale reaction without compromising the yield or d-incorporation level. / Thesis (MS) — Boston College, 2020. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
10

Efficient Asymmetric Synthesis of Axially Chiral Biaryls and Spirofuranones via Phase-Transfer-Catalyzed Reactions / 相間移動反応による軸不斉ビアリールおよびスピロフラノンの効率的不斉合成

Xiangfei, Wu 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19513号 / 理博第4173号 / 新制||理||1599(附属図書館) / 32549 / 京都大学大学院理学研究科化学専攻 / (主査)教授 丸岡 啓二, 教授 大須賀 篤弘, 教授 依光 英樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM

Page generated in 0.1083 seconds