• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 340
  • 74
  • 11
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 1052
  • 798
  • 412
  • 325
  • 272
  • 141
  • 104
  • 92
  • 81
  • 78
  • 78
  • 72
  • 71
  • 68
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Quantitative analysis of resolved X-ray emission line profiles of O stars

Cohen, D. H., Leutenegger, M. A., Townsend, R. H. D. January 2007 (has links)
By quantitatively fitting simple emission line profile models that include both atomic opacity and porosity to the Chandra X-ray spectrum of ζ Pup, we are able to explore the trade-offs between reduced mass-loss rates and wind porosity. We find that reducing the mass-loss rate of ζ Pup by roughly a factor of four, to 1.5 × 10−6 M⊙ yr−1, enables simple non-porous wind models to provide good fits to the data. If, on the other hand, we take the literature mass-loss rate of 6×10−6 M⊙ yr−1, then to produce X-ray line profiles that fit the data, extreme porosity lengths – of h∞ ≈ 3 R∗ – are required. Moreover, these porous models do not provide better fits to the data than the non-porous, low optical depth models. Additionally, such huge porosity lengths do not seem realistic in light of 2-D numerical simulations of the wind instability.
52

Hα line profile variability in the B8Ia-type supergiant Rigel (β Ori)

Morrison, N. D., Rother, R., Kurschat, N. January 2007 (has links)
Hα observations of Rigel obtained on 184 nights during the past ten years with the 1-m telescope and ´echelle spectrograph of Ritter Observatory are surveyed. The line profiles were classified in terms of morphology. About 1/4 of them are of P Cygni type, about 15% inverse P Cygni, about 25% double-peaked, about 1/3 pure absorption, and a few are single emission lines. Transformation of the profile from one type to another typically takes a few days. Although the line stays in absorption for extended intervals, only one high-velocity absorption event of the intensity reported by Kaufer et al. (1996a) was observed, in late 2006. Late in this event, Hα absorption occurred farther to the red than the red wing of a plausible photospheric absorption component, an indication of infalling material. In general, as the absorption events come to an end, the emission typically returns with an inverse P Cygni profile. The Hα profile class shows no obvious correlation with the radial velocity of C II λ6578, a photospheric absorption line.
53

X-raying clumped stellar winds

Oskinova, Lidia M., Hamann, Wolf-Rainer, Feldmeier, Achim January 2007 (has links)
X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging Xray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if the wind clumps are radially compressed. In massive binaries the orbital variations of X-ray emission allow to probe the opacity of the stellar wind; results support the picture of strong wind clumping. In high-mass X-ray binaries, the stochastic X-ray variability and the extend of the stellar-wind part photoionized by X-rays provide further strong evidence that stellar winds consist of dense clumps.
54

Wind variabilities and asymmetries in Luminous Blue Variables

Szeifert, T. January 2007 (has links)
Luminous Blue Variables show strong changes in their stellar wind on time scales of typically years to decades when they expand and contract radially at approximately constant luminosity. Micro-variability on shorter time scales and amplitudes can be observed superimposed to the larger scale radial changes. I will show long-term time series of high resolution spectra which we have collected in the past 20 years for many of the well known LBVs together with a few time series of weekly sampling (HR Car, R40, R71, R110, R127, S Dor) covering a time windows of up to a few months. Wind variability is seen on short and intermediate time scales with the line profiles changing from P Cygni to inverse P Cygni and double peeked profiles sometimes for the same star and spectral line. On longer time scales the ionisation levels for all chemical elements change drastically due to the strong change of the temperature on the stellar surface. While on the long term the characteristic radial changes may have impact on the over all mass loss rates, the variabilities and asymmetries on short and intermediate time scales may cause false estimates of the mass loss rates when confronting models with the observed line profiles
55

Discussion: Binaries, colliding winds, LBVs and high energy radiation

St-Louis, N. January 2007 (has links)
Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007
56

Rapidly accelerating clumps in the winds of the very hot WNE Stars

Chené, A.-N., Moffat, Anthony F. J., Crowther, P. A. January 2007 (has links)
We study the time variability of emission lines in three WNE stars : WR 2 (WN2), WR 3 (WN3ha) and WR152 (WN3). While WR 2 shows no variability above the noise level, the other stars do show variation, which are like other WR stars in WR 152 but very fast in WR 3. From these motions, we deduce a value of β ∼1 for WR 3 that is like that seen in O stars and β ∼2–3 for WR 152, that is intermediate between other WR stars and WR 3.
57

VHE gamma-rays from Westerlund 2 and implications for the inferred energetics

Reimer, O., Aharonian, F., Hinton, J., Hofmann, W., Hoppe, S., Raue, M., Reimer, A. January 2007 (has links)
The H.E.S.S. collaboration recently reported the discovery of VHE γ-ray emission coincident with the young stellar cluster Westerlund 2. This system is known to host a population of hot, massive stars, and, most particularly, the WR binary WR 20a. Particle acceleration to TeV energies in Westerlund 2 can be accomplished in several alternative scenarios, therefore we only discuss energetic constraints based on the total available kinetic energy in the system, the actual mass loss rates of respective cluster members, and implied gamma-ray production from processes such as inverse Compton scattering or neutral pion decay. From the inferred gammaray luminosity of the order of 1035erg/s, implications for the efficiency of converting available kinetic energy into non-thermal radiation associated with stellar winds in the Westerlund 2 cluster are discussed under consideration of either the presence or absence of wind clumping.
58

Modelling the induced clumping stochastic line profile variability

Kholtygin, A. F. January 2007 (has links)
We model the line profile variability (lpv) in spectra of clumped stellar atmospheres using the Stochastic Clump Model (SCM) of the winds of early-type stars. In this model the formation of dense inhomogeneities (clumps) in the line driven winds is considered as being a stochastic process. It is supposed that the emission due to clumps mainly contributes to the intensities of emission lines in the stellar spectra. It is shown that in the framework of the SCM it is possible to reproduce both the mean line profiles and a common pattern of the lpv.
59

Discussion: Magnetic fields, variability

Cassinelli, Joe P. January 2007 (has links)
-
60

Eta Carinae viewed from different vantages

Gull, T. R. January 2007 (has links)
The spatially-resolved winds of the massive binary, Eta Carinae, extend an arcsecond on the sky, well beyond the 10 to 20 milliarcsecond binary orbital dimension. Stellar wind line profiles, observed at very different angular resolutions of VLTI/AMBER, HST/STIS and VLT/UVES, provide spatial information on the extended wind interaction structure as it changes with orbital phase. These same wind lines, observable in the starlight scattered off the foreground lobe of the dusty Homunculus, provide time-variant line profiles viewed from significantly different angles. Comparisons of direct and scattered wind profiles observed in the same epoch and at different orbital phases provide insight on the extended wind structure and promise the potential for three-dimensional imaging of the outer wind structures. Massive, long-lasting clumps, including the nebularWeigelt blobs, originated during the two historical ejection events. Wind interactions with these clumps are quite noticeable in spatially-resolved spectroscopy. As the 2009.0 minimum approaches, analysis of existing spectra and 3-D modeling are providing bases for key observations to gain further understanding of this complex massive binary.

Page generated in 0.1358 seconds