Spelling suggestions: "subject:"allow catalysts""
1 |
Electronic modification of platinum and palladium alloy catalysts and the consequences for dehydrogenation selectivityStephen C Purdy (6635948) 10 June 2019 (has links)
Dehydrogenation is the catalytic process of removing hydrogen from a saturated hydrocarbon to produce an olefin. Olefins are important feedstocks for the petrochemical industry and can potentially be used to produce fuels through oligomerization. Alloys containing an active metal such as platinum and palladium and a non-catalytic metal offer improved selectivity towards the olefin. This body of work seeks to further the understanding of how heteroatomic bonds in alloys change the rate and selectivity of alloy catalysts used for dehydrogenation.In the first study, a series of Pt-V bimetallic catalysts are synthesized, which are highly selective propane dehydrogenation catalysts. The bimetallic nature of the nanoparticles was verified by in-situX-ray Absorption Spectroscopy(XAS)and the formation of the Pt3V alloy phase was shown by in-situ synchrotronX-ray Diffraction(XRD). A reduction-oxidation differenceXASmethod was used to examine the surface stoichiometry and found that a shell layer of the alloy phase forms when the particles are platinum rich. Electronic modification of Pt was studied by Pt L3edgeX-ray Absorption Near Edge Structure(XANES),X-ray Photoelectron Spectroscopy(XPS), Resonant Inelastic X-ray Scattering (RIXS)andDensity FunctionalTheory(DFT). The spectral changes observed were shown to be due to changes in the energy of the filled and unfilled 5d density of states, and not due to electron transfer. The electronic modifications cause a weakening of adsorbate binding and destabilization of deeply dehydrogenated hydrocarbons, which contributes to the dehydrogenation selectivity.In the second study, alloys between palladium and five different promoters were synthesized and tested as propane dehydrogenation catalysts.The structure ofthe alloy catalysts was characterized by in-situ XAS and in-situ synchrotron XRD.Zinc and indium form alloy structures with site isolated palladium, while gallium, iron and manganese do not. All of the alloys have improved propane dehydrogenation selectivity compared to monometallic palladium. The propylene production turnover rate of the alloys increased by almost an order of magnitude compared to monometallic Pd, but among the alloys the turnover ratesonly varied by a factor of two despite the different structures and electronic modifications inherent to each phase. The site isolated alloys had higher propylene selectivity than those that were not site isolated. The site isolated alloys showed strongerelectronic modification: both in binding strengths and in Pd projected Density of States (pDOS)by DFT than did the non-site isolated alloys. The commonly used computational selectivity descriptor for dehydrogenation, which is the difference in energy between alkene desorption and alkene C-H bond activation energy correctly predicts that the site isolated alloys will have high selectivity but shows weaker trends for alloys without site isolation. A modified selectivity descriptor, involving the C-C bond breaking barrier in the adsorbed alkyne more accurately reflects the high selectivity of the non-site isolated alloys.In a third study,RIXS and XPSare used to examine trends in the electronic modification of platinum alloys with transition metal and post transition metal promoters. All alloys show an increase in the energy transfer maximum, showing that alloying modifies energy the filled and unfilled density of states. The increase in the energy transfer maximum in platinum alloys with 3d metals islargerfor early transition metals, which by DFT show larger shifts in the d-band center. The post transition elements showsignificantlylarger shifts than to the transition elements, partially due to the lack of orbital overlap between the valence p orbitals and Pt 5d orbitals. Platinum has the same number of valence d electrons regardless of promoter or structure, and redistribution of the 5d electron energy brought about by heteroatomic bonds leads to the observed electronic modifications. The positive binding energy shifts measured by XPS reflect these energy changes, which occur due to changes in the Fermi energy of the alloy, initial state effects and intra and extra atomic relaxation (final state effects). The calculated initial state effect shift is correlated to descriptors of the valence d band, such as the d band center.
|
2 |
Scanning tunneling microscopy studies on the structure and stability of model catalystsYang, Fan 15 May 2009 (has links)
An atomic level understanding of the structure and stability of model catalysts is
essential for surface science studies in heterogeneous catalysis. Scanning tunneling
microscopy (STM) can operate both in UHV and under realistic pressure conditions with
a wide temperature span while providing atomic resolution images. Taking advantage of
the ability of STM, our research focuses on 1) investigating the structure and stability of
supported Au catalysts, especially under CO oxidation conditions, and 2) synthesizing
and characterizing a series of alloy model catalysts for future model catalytic studies.
In our study, Au clusters supported on TiO2(110) have been used to model
supported Au catalysts. Our STM studies in UHV reveal surface structures of TiO2(110)
and show undercoordinated Ti cations play a critical role in the nucleation and
stabilization of Au clusters on TiO2(110). Exposing the TiO2(110) surface to water vapor
causes the formation of surface hydroxyl groups and subsequently alters the growth
kinetics of Au clusters on TiO2(110). STM studies on Au/TiO2(110) during CO
oxidation demonstrate the real surface of a working catalyst. Au clusters supported on TiO2(110) sinter rapidly during CO oxidation, but are mostly stable in the single
component reactant gas, either CO or O2. The sintering kinetics of supported Au clusters
has been measured during CO oxidation and gives an activation energy, which supports
the mechanism of CO oxidation induced sintering. CO oxidation was also found to
accelerate the surface diffusion of Rh(110). Our results show a direct correlation
between the reaction rate of CO oxidation and the diffusion rate of surface metal atoms.
Synthesis of alloy model catalysts have also been attempted in our study with
their structures successfully characterized. Planar Au-Pd alloy films has been prepared
on a Rh(100) surface with surface Au and Pd atoms distinguished by STM. The growth
of Au-Ag alloy clusters have been studied by in-situ STM on a cluster-to-cluster basis.
Moreover, the atomic structure of a solution-prepared Ru3Sn3 cluster has been resolved
on an ultra-thin silica film surface. The atomic structure and adsorption sites of the ultrathin
silica film have also been well characterized in our study.
|
3 |
Investigation of the ORR at PEM Fuel Cell Electrodes: Catalysis, Pulse Voltammetry & High Temperature ApplicationsPietrasz, Patrick 17 May 2010 (has links)
No description available.
|
4 |
Theoretical Studies on Electrode Reactions in Proton Exchange Membrane Fuel CellsTian, Feng January 2011 (has links)
No description available.
|
5 |
Study of Pt-based Catalysts for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells by operando X-ray Absorption Spectroscopy / オペランドX線吸収分光法による固体高分子型燃料電池における酸素還元反応用のPt系触媒の研究Gao, Yunfei 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第25386号 / 人博第1128号 / 新制||人||262(附属図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 藤田 健一, 教授 高木 紀明, 教授 竹口 竜弥 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
|
Page generated in 0.0882 seconds