• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetically useful alkene isomerisation and hydroboration reactions

Fordred, Paul January 2012 (has links)
Upon treatment with a palladium catalyst and hydrogen gas in the presence of caesium carbonate, a wide range of exomethylenic allylic alcohols were found to afford their corresponding trisubstituted isomers. Although hydrogenation was an unavoidable competing pathway, careful monitoring of the reaction progress allowed the desired isomerised products to be obtained in moderate to excellent yields and high (E):(Z) ratios.
2

Development of an Elegant, Thermally Benign Johnson-Claisen Rearrangement

Kelly Cosgrove Unknown Date (has links)
The Johnson-Claisen rearrangement is a valuable method for the formation of new carbon-carbon bonds, however the rearrangement suffers from high reaction temperatures and prolonged reaction times. On the basis of previous research into substituent-induced rate enhancements of the Claisen rearrangement, we aimed to reduce the severity of the Johnson-Claisen conditions by applying this reaction to allylic cyanohydrins. Application of the standard Johnson-Claisen conditions (excess of orthoester and catalytic protic acid) to allylic cyanohydrins resulted in their decomposition to a,b- unsaturated aldehydes. The anticipated d-ethoxycarbonyl-a,b-unsaturated nitriles were formed in trace amounts. Subsequent optimisation of this reaction has allowed a practical entry into a,b- unsaturated nitriles in reasonable yields, however high reaction temperatures were necessary for an efficient conversion. Clearly, a change of approach was desired; we have since discovered that mixed orthoesters derived from allylic alcohols undergo methanol elimination in the presence of triisobutylaluminium (TIBAL) at room temperature to form mixed ketene acetals. TIBAL then promotes immediate Claisen rearrangement of these intermediates, and subsequent reduction of the ester products to yield, g,d- unsaturated primary alcohols in a convenient one-pot procedure, with yields ranging from 52-81% and with a range of functional group tolerance.
3

Iridium Catalysed Asymmetric Hydrogenation of Olefins and Dynamic Kinetic Resolution in the Asymmetric Hydrogenation of Allylic Alcohols

Liu, Jianguo January 2017 (has links)
The work described in this thesis is focused on exploring the efficacy of iridium-catalysed asymmetric hydrogenation of precursors to chiral alcohols and chiral cyclohexanes. A range of allylic alcohols including γ,γ-dialkyl allylic alcohols and (Z)-allylic alcohols were prepared and evaluated in the asymmetric hydrogenation using iridium catalysts resulting in chiral alcohols in high yields and excellent enantioselectivity. This methodology was applied in the formal synthesis of Aliskiren, an efficient renin inhibitor drug, using the asymmetric hydrogenation of an allylic alcohol as a key-step. Another project concerned the dynamic kinetic resolution of racemic secondary allylic alcohols using Ir-N,P catalysts under hydrogenation conditions. A range of secondary allylic alcohols and protected alcohols were evaluated in the asymmetric hydrogenation via dynamic kinetic resolution using Ir-N,P catalysts. The corresponding chiral saturated alcohols were formed in good yield with excellent diastereoselectivites (up to 95/5) and enantioselectivities (&gt;99% ee). The last part of this thesis is directed towards the development of highly regio- and enantioselective asymmetric hydrogenation of 1,4-cyclohexadienes and its application in the preparation of useful chiral cyclohexenone intermediates. Non-functionalised, functionalised and heterocycle-containing cyclohexadienes were evaluated. Good yield of regioselectively mono-hydrogenated silyl protected enol ethers were obtained in most cases with excellent enantioselectivity. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 5: Manuscript.</p>
4

Réactions de carbonylation de substrats naturels de plantes / Carbonylation reaction of natural substrates extracted from plants

El Karroumi, Jamal 10 May 2014 (has links)
La fonctionnalisation par voie catalytique de substrats naturels a été menée dans le but d’accroître l’activité biologique reconnue de la molécule naturelle de départ ou de découvrir de nouvelles activités. Des réactions catalytiques telles que l’hydroformylation et l’alcoxycarbonylation mettant en jeu le monoxyde de carbone et catalysées par des complexes du rhodium et du palladium ou encore la réaction de cycloisomérisation catalysée par des complexes d’or ou du platine ont déjà permis d’accéder sélectivement à de nouvelles molécules intéressantes. Dans une première partie nous nous sommes intéressés à l’huile essentielle du cèdre de l’atlas (cedrus atlantica) qui est constituée d’une partie hydrocarbure et d’une partie oxygénée. Notre étude s’est focalisée sur la partie oxygénée de l’huile essentielle du cèdre de l’atlas qui est composée de deux cétones isomères, les Z- et E-α- atlantones. La réaction de cyclocarbonylation des alcools allyliques dérivés des α-atlantones a été étudiée. Cette réaction catalysée par des complexes du palladium permet d’obtenir des lactones à 5 et à 6 chainons. Plusieurs systèmes catalytiques de type [PdCl2L2]/SnCl2.2H2O ont été testés, lors de cette étude et nous avons montré que la regiosélectivité de la réaction peut être contrôlée par la nature du ligand utilisé. Ainsi, les ligands monophosphines favorisent la formation des lactones à 6 chainons obtenues sous forme de deux diastéréoisomères et les ligands diphosphines favorisent la formation de celles à 5 chainons obtenues sous forme de quatre diastéréoisomères. Ces lactones sont complètement caractérisées par RMN 1D et 2D et la spectrométrie de masse. Des monocristaux ont été obtenus et analysés par diffraction des rayons X. Dans une deuxième partie, la synthèse d’aldéhydes par réaction d’hydroformylation à partir de l’estragol, un allylbenzène extrait de l’huile essentielle de l’estragon, a été étudiée en présence du système catalytique [Rh(cod)(OMe)]2/ligand phosphole. Ainsi, nous avons évalué l’activité de plusieurs ligands phospholes dans cette réaction d’hydroformylation. Tous les ligands phospholes testés se sont révélés actifs et chimiosélectifs dans la réaction d’hydroformylation d’estragol pour donner majoritairement l’aldéhyde linéaire correspondant. Dans une étude préliminaire, nous avons étudié la réaction de cycloisomérisation d’énynes oxygénés dérivés d’α-atlantones catalysée par des complexes d’or ou du platine. / The catalytic functionnalisation of the natural substrates have been developped to increase their own biological activity or to give them new biological properties. The reactions such as hydroformylation, alkoxycarbonylation and cyclocarbonylation in presence of carbon monoxide catalyzed by rhodium or palladium complexes or cycloisomerisation catalyzed by gold or platinium complexes give an access to new interesting molecules with high selectivity. In first part we have been interested in study of the essential oil of the Atlas Cedar (Cedrus Atlantica). We focused in this study on the oxygenated fraction, which contains the two sesquiterpenic ketone,isomers Z- and E-α-atlantone. Starting from allylic alcohols derived from α-atlantone, the cyclocarbonylation reaction catalyzed by palladium complexes have been investigated. This reaction provide a mixture of five and six membered ring lactones with excellent conversion and excellent chemioselectivity. Different catalytic systems [PdCl2L2]/SnCl2.2H2O or [Pd(OAc)2]/L have been studied. The regiochemical control depends on the nature of the ligand L. The monophosphine ligands favor the formation of the six-membered ring lactones obtained as two diastereomers, while the diphosphine ligands allow the formation of the five- membered ring lactone obtained as four diastereomers. These new lactones were fully characterized by 1D and 2D NMR and mass spectrometry. Monocrystals of the six- and five-membered ring lactones suitable for X-ray diffraction analysis have been obtained. In a second part the hydroformylation reaction of estragol, a natural allylbenzene extracted from the essential oil of estragon, have been studied with the catalytic system [Rh(cod)(OMe)]2/phospholes. All the phosphole ligands show good activities and chemoselectivities in the hydroformylation of estragol and affords the linear aldehyde corresponding as a major product. In a preliminary study, we have investigated the cycloisomerisation reaction of o-tethered enynes derived from α-atlantones catalyzed by gold or platinum complexes.
5

Development of New Chiral Bicyclic Ligands : Applications in Catalytic Asymmetric Transfer Hydrogenation, Epoxidations, and Epoxide Rearrangements

Gayet, Arnaud January 2005 (has links)
<p>This thesis describes the synthesis and application of new chiral bicyclic ligands and their application in asymmetric catalysis. The studies involved: [i] The development of novel chiral bicyclic amino sulfur ligands and their use in transfer hydrogenation. [ii] The development of the kinetic resolution of racemic epoxide through the use of chiral lithium amides. [iii] The synthesis and application of chiral bicyclic amine in the organocatalysed epoxidation of alkenes. [iv] Development and application of new chiral diamine ligands in the rearrangement of epoxides into allylic alcohols.</p><p>[i] The preparation of two-series of amino thiol ligands based on the structure of camphor is described, together with their application in the iridium-catalysed asymmetric transfer hydrogenation of acetophenone using isopropanol as the hydrogen source. Excellent activity and good enantioselectivity have been achieved using 2 mol% of chiral ligand in combination with [IrCl(COD)]2.</p><p>[ii] The chiral diamines (1S,3R,4R)-3-(pyrrolidine-1-ylmethyl)-2-aza-bicyclo[2.2.1]heptane and its (2R,5R)-dimethylpyrrolidine derivative were applied to the kinetic resolution of a variety of racemic 5-7 membered cycloalkene oxides with lithium diisopropylamide (LDA) as the bulk base. Using 5 mol% of the chiral diamines, both unreacted epoxides and allylic alcohols could be produced in enantiomeric excess up to 99%.</p><p>[iii] The synthesis of chiral bicyclic amines and their use in the organocatalysed epoxidation of alkene has been described. Using a substoichiometric amount of the chiral amines and aldehydes as ligands precursors, with Oxone® as oxidant, a good activity but moderate enantioselectivity was observed for the epoxidation of trans-stilbene. </p><p>[iv] The preparation of 6-substituted-7-bromo-aza-bicyclo[2.2.1]heptanes via nucleophilic addition of organocopper reagents to 3-bromo-1-azoniatricyclo[2.2.1.0]heptyle bromide has been described. These compounds have been utilised as chiral building blocks in the preparation of novel chiral diamine ligands, which have been successfully applied to the catalysed asymmetric rearrangement of epoxide into the corresponding allylic alcohol.</p>
6

Development of New Chiral Bicyclic Ligands : Applications in Catalytic Asymmetric Transfer Hydrogenation, Epoxidations, and Epoxide Rearrangements

Gayet, Arnaud January 2005 (has links)
This thesis describes the synthesis and application of new chiral bicyclic ligands and their application in asymmetric catalysis. The studies involved: [i] The development of novel chiral bicyclic amino sulfur ligands and their use in transfer hydrogenation. [ii] The development of the kinetic resolution of racemic epoxide through the use of chiral lithium amides. [iii] The synthesis and application of chiral bicyclic amine in the organocatalysed epoxidation of alkenes. [iv] Development and application of new chiral diamine ligands in the rearrangement of epoxides into allylic alcohols. [i] The preparation of two-series of amino thiol ligands based on the structure of camphor is described, together with their application in the iridium-catalysed asymmetric transfer hydrogenation of acetophenone using isopropanol as the hydrogen source. Excellent activity and good enantioselectivity have been achieved using 2 mol% of chiral ligand in combination with [IrCl(COD)]2. [ii] The chiral diamines (1S,3R,4R)-3-(pyrrolidine-1-ylmethyl)-2-aza-bicyclo[2.2.1]heptane and its (2R,5R)-dimethylpyrrolidine derivative were applied to the kinetic resolution of a variety of racemic 5-7 membered cycloalkene oxides with lithium diisopropylamide (LDA) as the bulk base. Using 5 mol% of the chiral diamines, both unreacted epoxides and allylic alcohols could be produced in enantiomeric excess up to 99%. [iii] The synthesis of chiral bicyclic amines and their use in the organocatalysed epoxidation of alkene has been described. Using a substoichiometric amount of the chiral amines and aldehydes as ligands precursors, with Oxone® as oxidant, a good activity but moderate enantioselectivity was observed for the epoxidation of trans-stilbene. [iv] The preparation of 6-substituted-7-bromo-aza-bicyclo[2.2.1]heptanes via nucleophilic addition of organocopper reagents to 3-bromo-1-azoniatricyclo[2.2.1.0]heptyle bromide has been described. These compounds have been utilised as chiral building blocks in the preparation of novel chiral diamine ligands, which have been successfully applied to the catalysed asymmetric rearrangement of epoxide into the corresponding allylic alcohol.

Page generated in 0.0749 seconds