Spelling suggestions: "subject:"allylic other""
1 |
Boron and Titanium(IV) Halide Mediated ReactionsQuinn, Michael Patrick 01 August 2010 (has links)
This dissertation summarizes research efforts focused on the use of boron and transition metal halides to form new carbon-carbon and carbon-halide bonds. The boron halide mediated alkyne-aldehyde coupling reaction to generate 1,3,5-triaryl-1,5-dihalo-1,4-dienes was reinvestigated in an attempt to explain the stereochemistry observed during changing of both the mode of addition and the reaction temperature. Either (Z,Z)-1,4-dienes or (Z,E)-1,4-dienes can be the predominant product depending on reaction conditions used. This mechanistic investigation also led to the discovery of several novel reactions. These include the stereoselective preparation of (Z)-3-chloroallylic ethers from the reaction of alkenylboron dichlorides with aryl aldehydes in the presence of an amine; the titanium(IV) halide coupling of alkoxides and alkynes; the haloallylation of aryl aldehydes with boron trihalide using different allylmetals; and the base induced elimination of the haloallylated products to form 1,3-dienes. The results of these studies strongly imply a cationic mechanism. The new reactions described herein can be characterized as atom-efficient, environmentally friendly, and capable of generating the desired products in good to excellent yields.
|
2 |
Sustainable Synthesis of Allylic Ethers of Relevance for Biomaterials / Hållbar syntes av allyliska etrar av relevans för biomaterialRamström, Anja, Camaj, David, Lill, Malin, Carlsson, Robin January 2020 (has links)
Lignin is the most abundant source of naturally occurring aromatic compounds but has mainly been considered as waste material or energy source in the pulp and paper industry. However, due to the drive to find new material applications derived from renewable resources, there are extensive research activities aiming to develop new routes to utilize this source toward novel polymer materials. In this project, cinnamyl alcohol was used as a benchmark substrate in determining the most favorable reaction conditions for the optimal dehydrative etherification of allylic alcohols. The optimal reaction conditions determined for cinnamyl alcohol aimed to be applied to the etherification of the structurally similar, lignin-derived coniferyl alcohol to produce a bio-based allylic ether of relevance for biomaterial applications. However, due to the COVID-19 pandemic, the investigation of the etherification of coniferyl alcohol could not be conducted and the project had to be limited to the synthesis of 2-phenylethyl cinnamyl ether. Thus, this project serves as a pre-study for the sustainable etherification of lignin-derived allylic alcohols of relevance for biomaterials. The optimal reaction conditions for the synthesis of 2-phenylethyl cinnamyl ether was concluded to be 0.25 M cinnamyl alcohol and 1.00 M 2-phenylethanol as initial concentration of the reactants, 0.02 M Zr(Cp)2(OTf)2 ∙ THF as initial concentration of the catalyst, benzotrifluoride as solvent, a reaction mixture temperature of 60 °C, and a reaction time of four hours. Using optimized reaction conditions, coniferyl alcohol, a lignin-derived allylic alcohol, could in further research be evaluated as a sustainably sourced allylating agent with potential for biomaterial purposes.
|
Page generated in 0.0704 seconds