• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of Epidermal Growth Factor Receptor (EGFR) Specific Nanoprobes for Surface Enhanced Raman Spectroscopy (SERS)

Lucas, Leanne Jennifer 29 July 2013 (has links)
Novel biocompatible nanoprobes for optical imaging of Epidermal Growth Factor receptor (EGFR) were created. 5 and 18 nm gold nanoparticles (AuNPs) and 5 and 45 nm diameter silver nanoparticles (AgNPs) were conjugated to EGF protein via ?-lipoic acid. AgNPs were not previously attached to EGF. TOF-MS confirms EGF-linker formation. ELISA verifies the linked-EGF activity alone and with EGF-NPs. Core-shell silver-gold nanoparticles (AgAuNPs) gave similar results. TEM staining with uranyl acetate exhibits a bright ring, smaller than EGF, around nanoparticles. Dark field microscopy shows localized, intense cytoplasmic scattering, possibly lipid droplets, in cancer cells incubated with or without nanoprobes. Following injection, mice organs were harvested for EGF-NP immune response determination. Sterilization likely inactivated EGF before ICP-MS. Intense surface enhanced Raman scattering (SERS, 632.8 nm) follows MgSO4 induced EGF-AgNPs aggregation. Pelleted EGF-AgNP tagged cancer cells lack SERS indicative intensity contrast. AgAuNPs could provide increased stability, brighter SERS, and reduced silver biocompatibility concerns.

Page generated in 0.0522 seconds