• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image-based Material Editing

Khan, Erum 01 January 2006 (has links)
Photo editing software allows digital images to be blurred, warped or re-colored at the touch of a button. However, it is not currently possible to change the material appearance of an object except by painstakingly painting over the appropriate pixels. Here we present a set of methods for automatically replacing one material with another, completely different material, starting with only a single high dynamic range image, and an alpha matte specifying the object. Our approach exploits the fact that human vision is surprisingly tolerant of certain (sometimes enormous) physical inaccuracies. Thus, it may be possible to produce a visually compelling illusion of material transformations, without fully reconstructing the lighting or geometry. We employ a range of algorithms depending on the target material. First, an approximate depth map is derived from the image intensities using bilateral filters. The resulting surface normals are then used to map data onto the surface of the object to specify its material appearance. To create transparent or translucent materials, the mapped data are derived from the object's background. To create textured materials, the mapped data are a texture map. The surface normals can also be used to apply arbitrary bidirectional reflectance distribution functions to the surface, allowing us to simulate a wide range of materials. To facilitate the process of material editing, we generate the HDR image with a novel algorithm, that is robust against noise in individual exposures. This ensures that any noise, which would possibly have affected the shape recovery of the objects adversely, will be removed. We also present an algorithm to automatically generate alpha mattes. This algorithm requires as input two images--one where the object is in focus, and one where the background is in focus--and then automatically produces an approximate matte, indicating which pixels belong to the object. The result is then improved by a second algorithm to generate an accurate alpha matte, which can be given as input to our material editing techniques.

Page generated in 0.1622 seconds