• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mountain-Block Recharge to the Cache Valley Principal Aquifer and Geochemical Controls on Groundwater Movement in Alpine Karst

Sorsby, Skyler J. 01 May 2019 (has links)
Groundwater is documented to flow through solution-widened fractures and bedding planes in limestone and dolostone units in low-relief topography. This enhancement, or karstification, is much harder to study in alpine environments like the Bear River Range of northern Utah. This is problematic, due to the fact that the Bear River Range karst aquifer system supplies the City of Logan with a large quantity of water at Dewitt Spring. Furthermore, the karst aquifer sustains the Logan River for much of the year, and may allow groundwater to flow directly in the subsurface to the Cache Valley principal aquifer system. Flow measurements along the Logan River constrain a minimum volume of 2.32x106 m3 /y (1.88x103 af/y) that could recharge the Cache Valley principal aquifer. Hydraulic characteristics of alpine karst were estimated by analysis of major ions, stable isotopes, and dissolved gases in spring waters. These data reflect quick groundwater flow through caverns, with no evidence for “diffuse” flow anticipated by some to occupy interstitial space. In fact, the oldest reasonable estimated recharge age for groundwater is 70 years. Young recharge, fast flow, and low storage capability indicate that alpine karst aquifers are very sensitive to droughts and that related water resources are vulnerable to longer-term changes in climate.
2

Structural and Lithological Influences on the Tony Grove Alpine Karst System, Bear River Range, North Central Utah

Bahr, Kirsten 01 May 2016 (has links)
The fracture-dominated Tony Grove alpine karst system in the Bear River Range in north-central Utah, has caves ranging from 5m deep, consisting of solution-enlarged single fractures, to the large, 374m deep, Main Drain Cave, characterized by a series of vertical drops and horizontal passages. The caves int he Tony Grove area are developed throughout the 510m thick Fish Haven and Laketown Dolomites. The Swan Peak Formation, consisting of orthoquartzite and shale, underlies the dolomites. Surface fracture measurements (n=3502) yielded two distinctive sets of fractures. The northeast-southwest sets had a mean orientation of 41±0.7° and the northwest-southeast set with a mean of 133±5°. Of the sixteen caves surveyed for fractures and passages, fifteen were controlled by fractures, although some caves had both facture-and non-fracture-controlled passages. Only one cave was entirely non-fracture controlled, likely due to a change in lithology. Main Drain Cave, the only cave with long horizontal passages, was surveyed for both fracture and stratigraphic influences on horizontal cave development. Results indicate some sections are controlled by southeast-trending-fractures and other sections are controlled by southwest-dipping-bedding planes. Alternatively, parts of the down-dip-oriented sections may be influenced by southwest-oriented fractures. Stratigraphic control in this cave includes cherty layers that appear to hinder down-cutting of passages into lower stratigraphic units. Surface mapping determined that there is a southeast-oriented fold pair east of the Logan Peak Syncline, consisting of the Naomi Peak Syncline and the Cottonwood Canyon Anticline. The anticline merges with the Logan Peak Syncline near the head of Cottonwood Canyon. The Naomi Peak Syncline continues north-northeast through the Tony Grove area and may divert water from the Tony Grove area to Wood Camp Hollow Spring in Logan Canyon. The anticline acts as a divide between groundwater traveling southwest to Dewitt Spring and south-southeast to Wood Camp Hollow Spring. The Swan Peak Formation appears to act as a barrier to groundwater movement into the underlying formations, separating the Tony Grove system from underlying systems.

Page generated in 0.0474 seconds