• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alpine lake sediment archives and catchment geomorphology : causal relationships and implications for paleoenvironmental reconstructions

Rubensdotter, Lena January 2006 (has links)
<p>Lake sediments are frequently used as archives of climate and environmental change. Minerogenic sediment variability in alpine lakes is often used to reconstruct past glacier and slope process activity. Alpine lake sediments can however have many different origins, which may induce errors in paleoenvironmental reconstructions. The aim of this project was to enhance the understanding of minerogenic lake sedimentation in alpine lakes and improve their use as environmental archives.</p><p>Catchment geomorphology and Holocene sediment sequences were analysed for five alpine lakes. Several minerogenic sediment sources were detected in catchments and sediment sequences. Slope-, fluvial-, periglacial-, nival- and aeolian sediment transportation processes contribute to create complex lake sediment patterns. Large variations in sedimentation rates were discovered within and between lakes, which has implications for sampling strategies and age-model constructions. Similar fine-grained minerogenic laminations were found in four of the investigated lakes, despite large differences in setting. The demonstrated similarity between glacial and non-glacial lakes may complicate interpretations of glaciolacustrine sediment signals.</p><p>The main conclusion is that lake sedimentation in alpine environments is highly dependent on several geomorphological factors. All lakes should therefore be viewed as unique and the geomorphology should be thoroughly investigated before environmental reconstructions are based on lake sediment proxies. This study has confirmed the multi-source origin of alpine lake sediment, which also opens possibilities of more multi-faceted paleoenvironmental studies. Different process-proxies could potentially be used to separate different climate signals, e.g. precipitation, temperature and wind, in lake sediments. Analysis of grain-size distribution, detailed mineralogy and magnetic mineralogy in combination with X-ray radiography are suggested methods for such reconstructions.</p>
2

Alpine lake sediment archives and catchment geomorphology : causal relationships and implications for paleoenvironmental reconstructions

Rubensdotter, Lena January 2006 (has links)
Lake sediments are frequently used as archives of climate and environmental change. Minerogenic sediment variability in alpine lakes is often used to reconstruct past glacier and slope process activity. Alpine lake sediments can however have many different origins, which may induce errors in paleoenvironmental reconstructions. The aim of this project was to enhance the understanding of minerogenic lake sedimentation in alpine lakes and improve their use as environmental archives. Catchment geomorphology and Holocene sediment sequences were analysed for five alpine lakes. Several minerogenic sediment sources were detected in catchments and sediment sequences. Slope-, fluvial-, periglacial-, nival- and aeolian sediment transportation processes contribute to create complex lake sediment patterns. Large variations in sedimentation rates were discovered within and between lakes, which has implications for sampling strategies and age-model constructions. Similar fine-grained minerogenic laminations were found in four of the investigated lakes, despite large differences in setting. The demonstrated similarity between glacial and non-glacial lakes may complicate interpretations of glaciolacustrine sediment signals. The main conclusion is that lake sedimentation in alpine environments is highly dependent on several geomorphological factors. All lakes should therefore be viewed as unique and the geomorphology should be thoroughly investigated before environmental reconstructions are based on lake sediment proxies. This study has confirmed the multi-source origin of alpine lake sediment, which also opens possibilities of more multi-faceted paleoenvironmental studies. Different process-proxies could potentially be used to separate different climate signals, e.g. precipitation, temperature and wind, in lake sediments. Analysis of grain-size distribution, detailed mineralogy and magnetic mineralogy in combination with X-ray radiography are suggested methods for such reconstructions.
3

CAUSES AND CONSEQUENCES OF VARIATION IN UV TRANSPARENCY FOR FRESHWATER ECOSYSTEMS

Rose, Kevin C. 03 May 2011 (has links)
No description available.

Page generated in 0.0751 seconds