• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Applications of Universal Genetic Code Expansion Platforms:

Italia, James Sebastian January 2019 (has links)
Thesis advisor: Abhishek Chatterjee / The emergence of genetic code expansion (GCE) technology, which enables sitespecific incorporation of unnatural amino acids (UAAs) into proteins, has facilitated powerful new ways to probe and engineer protein structure and function. Using engineered orthogonal tRNA/aminoacyl-tRNA synthetase (aaRS) pairs that suppress repurposed nonsense codons, a variety of structurally diverse UAAs have been incorporated into proteins in living cells. This technology offers tremendous potential for deciphering the complex biology of eukaryotes, but its scope in eukaryotic systems remains restricted due to several technical limitations. For example, development of the engineered tRNA/aaRS pairs for eukaryotic GCE traditionally relied on a eukaryotic cell-based directed evolution system, which are significantly less efficient relative to bacteria-based engineering platforms. The work described in this thesis establishes a new paradigm in GCE through the development of a novel class of universal tRNA/aaRS pairs, which can be used for ncAA incorporation in both E. coli and eukaryotes. We achieve this by developing engineered strains of E. coli, where one of its endogenous tRNA/aaRS pair is functionally replaced with an evolutionarily distant counterpart. The liberated pair can then be used for GCE in the resulting altered translational machinery (ATM) strain, as well as any eukaryote. Using this strategy, we have been able to genetically encode new bioconjugation chemistries, post-translational modifications, and facilitate the incorporation of multiple, distinct ncAAs into a single protein. The ATM technology holds enormous promise for significantly expanding the scope of the GCE technology in both bacteria and eukaryotes. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.

Page generated in 0.1189 seconds