• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of alternative feed ingredients and the effects on growth and flesh quality of Atlantic salmon (Salmo salar) and sablefish (Anoplopoma fimbria).

Friesen, Erin 11 1900 (has links)
Aquaculture feeds, traditionally composed mainly of fishmeal and fish oil, currently represent the largest cost to fish farmers. With aquaculture growing at an average of 8.8% per year and limited supply of fishmeal and fish oil, suitable alternatives must be found. In addition to increasing sustainability and lowering production costs, the use of plant and/or animal ingredients has the potential to lower flesh levels of persistent organic pollutants (POPs) such as polychlorinated biphenyls. Fish oil and to a lesser extent fishmeal, are considered to be the largest source POPs in farmed fish. Using alternative feed ingredients however, can compromise fish growth and the flesh quality of the final product. Lipid sources including flaxseed oil, canola oil, poultry fat and the protein sources canola protein concentrate, soy protein concentrate and poultry by-product meal were examined as alternatives to fish oil and fishmeal in one on-farm field study and one laboratory feeding trial with Atlantic salmon (Salmon salar) and two laboratory feeding trials conducted on sablefish (Anoplopoma fimbria), a relatively new marine aquaculture species. The nutritive value of the alternative ingredients was assessed on the basis of fish growth performance, proximate composition, fatty acid composition and apparent digestibility coefficients. Sensory attributes were evaluated in the sablefish studies while flesh POP levels were determined in both species. The use of alternative dietary lipids showed no negative effects on fish performance. However replacement of fishmeal with plant proteins in some cases, negatively affected fish growth. Flesh levels of persistent organic pollutants were significantly decreased (p<0.05) with the use of alternative dietary lipids, and flesh levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also depressed. Activated carbon treated anchovy oil and finishing diets were examined in the Atlantic salmon laboratory feeding trial and were effective at lowering flesh POP levels while providing high levels of EPA and DHA. The use of alternative feed ingredients will soon be inevitable in aquaculture feeds. The current research shows alternative lipids and proteins can be incorporated successfully in sablefish and Atlantic salmon feeds with minimal effects on fish growth and quality.
2

Use of alternative feed ingredients and the effects on growth and flesh quality of Atlantic salmon (Salmo salar) and sablefish (Anoplopoma fimbria).

Friesen, Erin 11 1900 (has links)
Aquaculture feeds, traditionally composed mainly of fishmeal and fish oil, currently represent the largest cost to fish farmers. With aquaculture growing at an average of 8.8% per year and limited supply of fishmeal and fish oil, suitable alternatives must be found. In addition to increasing sustainability and lowering production costs, the use of plant and/or animal ingredients has the potential to lower flesh levels of persistent organic pollutants (POPs) such as polychlorinated biphenyls. Fish oil and to a lesser extent fishmeal, are considered to be the largest source POPs in farmed fish. Using alternative feed ingredients however, can compromise fish growth and the flesh quality of the final product. Lipid sources including flaxseed oil, canola oil, poultry fat and the protein sources canola protein concentrate, soy protein concentrate and poultry by-product meal were examined as alternatives to fish oil and fishmeal in one on-farm field study and one laboratory feeding trial with Atlantic salmon (Salmon salar) and two laboratory feeding trials conducted on sablefish (Anoplopoma fimbria), a relatively new marine aquaculture species. The nutritive value of the alternative ingredients was assessed on the basis of fish growth performance, proximate composition, fatty acid composition and apparent digestibility coefficients. Sensory attributes were evaluated in the sablefish studies while flesh POP levels were determined in both species. The use of alternative dietary lipids showed no negative effects on fish performance. However replacement of fishmeal with plant proteins in some cases, negatively affected fish growth. Flesh levels of persistent organic pollutants were significantly decreased (p<0.05) with the use of alternative dietary lipids, and flesh levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also depressed. Activated carbon treated anchovy oil and finishing diets were examined in the Atlantic salmon laboratory feeding trial and were effective at lowering flesh POP levels while providing high levels of EPA and DHA. The use of alternative feed ingredients will soon be inevitable in aquaculture feeds. The current research shows alternative lipids and proteins can be incorporated successfully in sablefish and Atlantic salmon feeds with minimal effects on fish growth and quality.
3

Impact of alternative, non-fish oil dietary lipid sources and subsequent 'finishing' on growth and tissue long-chain polyunsaturated retention in cobia, Rachycentron canadum

Woitel, Franklin 01 August 2013 (has links)
Cobia (Rachycentron canadum) aquaculture is poised for expansion, due in part to rapid growth rate, tolerance of culture conditions, and high market value of this species. Similar to other carnivorous marine fishes, the high monetary cost and long-range unsustainability of reliance on fish oil as the principle lipid source for cobia feeds necessitates evaluation of alternative lipid sources to spare or replace fish oil. Unfortunately, alternative lipid-based feeds may affect production performance, and typically yield fillets with reduced levels of long-chain polyunsaturated fatty acids (LC-PUFAs) such as docosahexaenoic acid (DHA, 22:6n-3). Recent research has indicated that diets rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), coupled with the application of so-called "finishing feeds" (feeds containing elevated levels of fish oil relative to grow-out feeds) at the end of the production cycle, may limit or attenuate these effects of fish oil sparing. Accordingly, I conducted two trials to evaluate the usefulness of alternative lipids and finishing in cobia culture. In the first trial, I assessed growth performance and tissue fatty acid composition of juvenile cobia fed diets (~11% lipid, ~48% protein) containing fish oil (control), or 50/50 blends of fish oil and alternative lipids (beef tallow, pork lard, partially and fully hydrogenated soy oils, and traditional soy oil) supplemented with an algal meal (to meet the 22:6n-3 requirement of cobia) for 8 weeks. Although minor differences were observed in feed intake, growth performance was otherwise equivalent among the dietary groups. Tissue fatty acid composition varied significantly among treatments, however, with alternative lipids containing higher levels of saturated (SFAs) and monounsaturated fatty acids (MUFAs) yielding tissue profiles that were most similar to those associated with the fish oil-based control feed. Although beef tallow and hydrogenated soybean oil were largely equivalent in terms of growth performance and fatty acid profile change, beef tallow was selected for further evaluation because of its low cost. In the second trial, beef tallow replaced fish oil in feeds at one of four substitution levels: 0% (100% fish oil), 33%, 67%, or 100% tallow (with algal 22:6n-3 meal included in all feeds as before). Juvenile cobia were raised on these feeds for 8 weeks, then switched to the 100% fish oil-based control feed for an 8-week finishing period. During finishing, subsamples of fish were collected every 2 weeks to quantify changes in tissue fatty acid profile over time as a result of finishing. In the second trial, the overall similarity of tissue fatty profiles to those in the 100% fish oil control treatment increased over the course of finishing, mostly as a result of declines in SFAs and MUFAs. These results suggest that SFA and MUFA-rich lipids, such as fully hydrogenated soy oil and beef tallow, are effective and strategically valuable as partial substitutes for fish oil in cobia feeds, and that finishing is at least partially effective in restoring cobia tissue fatty acid composition to a state approximating that of cobia fed only fish oil as dietary lipid.
4

Use of alternative feed ingredients and the effects on growth and flesh quality of Atlantic salmon (Salmo salar) and sablefish (Anoplopoma fimbria).

Friesen, Erin 11 1900 (has links)
Aquaculture feeds, traditionally composed mainly of fishmeal and fish oil, currently represent the largest cost to fish farmers. With aquaculture growing at an average of 8.8% per year and limited supply of fishmeal and fish oil, suitable alternatives must be found. In addition to increasing sustainability and lowering production costs, the use of plant and/or animal ingredients has the potential to lower flesh levels of persistent organic pollutants (POPs) such as polychlorinated biphenyls. Fish oil and to a lesser extent fishmeal, are considered to be the largest source POPs in farmed fish. Using alternative feed ingredients however, can compromise fish growth and the flesh quality of the final product. Lipid sources including flaxseed oil, canola oil, poultry fat and the protein sources canola protein concentrate, soy protein concentrate and poultry by-product meal were examined as alternatives to fish oil and fishmeal in one on-farm field study and one laboratory feeding trial with Atlantic salmon (Salmon salar) and two laboratory feeding trials conducted on sablefish (Anoplopoma fimbria), a relatively new marine aquaculture species. The nutritive value of the alternative ingredients was assessed on the basis of fish growth performance, proximate composition, fatty acid composition and apparent digestibility coefficients. Sensory attributes were evaluated in the sablefish studies while flesh POP levels were determined in both species. The use of alternative dietary lipids showed no negative effects on fish performance. However replacement of fishmeal with plant proteins in some cases, negatively affected fish growth. Flesh levels of persistent organic pollutants were significantly decreased (p<0.05) with the use of alternative dietary lipids, and flesh levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also depressed. Activated carbon treated anchovy oil and finishing diets were examined in the Atlantic salmon laboratory feeding trial and were effective at lowering flesh POP levels while providing high levels of EPA and DHA. The use of alternative feed ingredients will soon be inevitable in aquaculture feeds. The current research shows alternative lipids and proteins can be incorporated successfully in sablefish and Atlantic salmon feeds with minimal effects on fish growth and quality. / Land and Food Systems, Faculty of / Graduate
5

ALTERNATIVE LIPIDS IN NUTRITION OF MARINE FINFISH

Rombenso, Artur Nishioka 01 May 2016 (has links)
Fish oil sparing and replacement is a major focus in the fields of aquaculture and aquaculture nutrition. Most of the commercial fish oil production is consumed by the aquafeed industry due to its highly digestible energy and elevated content of long-chain polyunsaturated fatty acids (LC-PUFAs; ARA – 20:4n-6, EPA – 20:5n-3, and DHA – 22:6n-3), being a valuable ingredient. Given the finite supply and the growing demand for fish oil its price has increased quite drastically, leading to the search for alternative lipid sources. Generally, vegetable- and terrestrial animal-origin alternatives lack LC-PUFAs, which are physiologically important nutrients for all fish, and considered essential fatty acids for carnivorous species. When fish oil is spared or replaced by alternative lipids fish survival, growth performance, and fish health are commonly impaired if adequate levels of essential fatty acids are not provided within feeds. Additionally, fish oil sparing typically distorts fillet fatty acid profile and associated nutritional value compared to a fish oil-based diet reflecting the composition of the alternative lipid used. It is clear that to address the fish oil bottleneck in aquafeed manufacturing, researchers must understand the essential fatty acid requirements of the key commercial fish species. Fatty acid essentiality in fish has been investigated, and there is preliminary evidence that not all LC-PUFAs may be equally required, with DHA being more important, and EPA being more expendable. Whereas ARA has not been investigated in the same extent as n-3 LC-PUFAs. Additionally, certain fatty acids groupings such as saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) may influence LC-PUFAs bioavailability, and in some cases maintain or enhance LC-PUFAs deposition. The current dissertation sought to provide new knowledge regarding LC-PUFA requirements of marine carnivorous fish (White Seabass Atractoscion nobilis, California Yellowtail Seriola lalandi and Florida Pompano Trachinotus carolinus) in the context of C18 PUFA-rich (i.e. polyunsaturated fatty acid with chain length of 18 carbon atoms) and SFA- and MUFA-rich alternative lipids. Determine if all LC-PUFAs (ARA, EPA, DHA) are equally important in meeting fatty acids requirements and also determine the effects of dietary SFA, MUFA, and C18 PUFA content in fish oil sparing and tissue deposition of LC-PUFAs. The overall findings highlighted that DHA and ARA appear to be the primary drivers of fatty acid essentiality, whereas EPA is likely required in minor amounts. It was also demonstrated that DHA/EPA ratio had little-to-no effect on fish performance. Additionally, LC-PUFA requirements seem to be more flexible than previously assumed being influenced by dietary fatty acid profile. LC-PUFAs in marine finfish are more bioavailable in the context of SFA-/MUFA-rich alternative lipids, thus, reducing the requirements for these nutrients and allowing the fish’s physiological demand to be met with dietary levels below the minimum levels recommended. Finally, these findings suggest that although marine fish accept a variety of alternative lipids, those rich in SFAs and/or MUFAs seem advantageous in terms of limiting the effects of fish oil sparing on tissue fatty acid profiles.

Page generated in 0.087 seconds