• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de compositos refratarios SiC-AlN e SiC-SiAlON

MAKUNTUALA, KEVA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:25:35Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:54Z (GMT). No. of bitstreams: 1 06875.pdf: 3426497 bytes, checksum: f67e7359c8137f84a2c63219a3f4ce7a (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
2

Desenvolvimento de compositos refratarios SiC-AlN e SiC-SiAlON

MAKUNTUALA, KEVA 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:25:35Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:54Z (GMT). No. of bitstreams: 1 06875.pdf: 3426497 bytes, checksum: f67e7359c8137f84a2c63219a3f4ce7a (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
3

Advanced electron microscopy of wide band-gap semiconductor materials

Fay, Michael W. January 2000 (has links)
No description available.
4

Electronic structure calculations on nitride semiconductors and their alloys

David, Dugdale January 2000 (has links)
Calculations of the electronic properties of AIN, GaN, InN and their alloys are presented. Initial calculations are performed using the first principles pseudopotenial method to obtain accurate lattice constants. Further calculations then investigate bonding in the nitrides through population analysis and density of state calculations, the empirical pseudopotential method is also used in this work. Pseudopotentials 'or each of the nitrides are constructed using a functional form that allows strained material and alloys to be studied. The conventional k,p valence band parameters for both zincblende and wurtzite are obtained from the empirical band structure using two different methods. A Monte-Carlo fitting of the k.p band structure to the pseudopotential data (or an effective mass method for the zincblende structure) is used to produce one set. Another set is obtained directly from the momentum matrix elements and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculating k.p parameters produce band structure in excellent agreement with the original empirical band calculations near the centre of the Brillouin zone. The advantage of the direct method is that it produces consistent sets of parameters, and can be used in studies involving a series of alloy compositions. Further empirical pseudopotential method calculations are then performed for alloys of the nitrides. In particular, the variation of the band gap with alloy composition is investigated, and good agreement with theory and experiment is found. The direct method is used to obtain k.p parameters for the alloys, and is contrasted with the fitting approach. The behaviour of the nitrides under strain is also studied. In particular, valence band offsets for nitride heterojunctions are calculated, and a strong forward-backward asymmetry in the band offset is found, in good agreement with other results in the literature.
5

Simulations of electron transport in GaN devices

Arabshahi, Hadi January 2002 (has links)
This thesis deals with the development and application of Monte Carlo simulations to study electron transport in bulk GaN in the wurtzite crystal structure and the properties of field effect transistors made from the material. There is a particular emphasis on transport in the high electric field regime and transistors operating at high voltages. The simulation model includes five sets of non-parabolic conduction band valleys which can be occupied by electrons during high field transport. The effects on electron transport of impurities and the relevant phonon scattering mechanisms have been considered. Results for electron transport at both low and high electric field are presented and compared with the properties of GaN in the zincblende structure, of other group-III nitride semiconductors, and of GaAs. The dependence of the transport properties on the material parameters is discussed and also with regard to the temperature, donor concentration and electric field magnitude and direction. The transport properties of electrons in wurtzite GaN n+-i(n)-n+ diodes are also explored, including the effect of the upper valleys and the temperature on hot electron transport. Simulations have also been carried out to model the steady-state and transient properties of GaN MESFETs that have recently been the subject of experimental study. It has been suggested that traps have a substantial effect on the performance of GaN field effect transistors and we have developed a model of a device with traps to investigate this suggestion. The model includes the simulation of the capture and release of electrons by traps whose charge has a direct effect on the current flowing through the transistor terminals. The influence of temperature and light on the occupancy of the traps and the /- V characteristics are considered. It is concluded that traps are likely to play a substantial role in the behaviour of GaN field effect transistors. Further simulations were performed to model electron transport in AlGaN/GaN hetero-junction FETs. So called HFET structures with a 78 nm Alo.2Gao.8N pseudomorphically strained layer have been simulated, with the inclusion of spontaneous and piezoelectric polarization effects in the strained layer. The polarization effects are shown to not only increase the current density, but also improve the electron transport by inducing a higher electron density close to the positive charge sheet that occurs in the channel.
6

Microstructures of group III-nitrides after implantation with gallium

Kench, P. J. January 2001 (has links)
No description available.
7

Raman microscopic studies of PVD deposited hard ceramic coatings

Constable, Christopher Paul January 2000 (has links)
PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150-300cm[-1]) and optical (400-750cm[-1]) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to "phonon relaxation mechanisms" as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of "droplets", a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved successful. This was then expanded to real wear situations in which tools were monitored after 3,6,12,64,120 and 130 minutes-in-cut. A PCA chemometrics model able to distinguish between component layers and oxides was developed. Raman microscopy was found to provide structural and compositional information on oxide scales formed on the surfaces of heat-treated coatings. Wear debris, generated as a consequence of sliding wear tests on various coatings, was also found to be primarily oxide products. The comparison of the oxide types within the debris to those formed on the surface of the same coating statically oxidised, facilitated a contact temperature during sliding to be estimated. Raman microscopy, owing to the piezo-spectroscopic effect, is sensitive to stress levels. The application of Raman microscopy for the determination of residual compressive stresses within PVD coatings was evaluated. TiAlN/VN superlattice coatings with engineered stresses ranging -3 to -11.3 GPa were deposited onto SS and HSS substrates. Subsequent Raman measurements found a correlation coefficient of 0.996 between Raman band position and stress (determined via XRD methods). In addition, there was also a similar correlation coefficient observed between hardness and Raman shift (cm-1). The application of mechanical stresses on a TiAlCrN coating via a stress rig was investigated and tensile and compressive shifts were observed.

Page generated in 0.0713 seconds