Spelling suggestions: "subject:"aluminum -- brazil"" "subject:"aluminum -- brazil's""
1 |
KINETICS OF WEDGE-TEE JOINT FORMATION DURING BRAZING OF AN ALUMINUM ALLOY UNDER CONTROLLED ATMOSPHEREDong, Fangxiao 01 January 2013 (has links)
This work involves investigation of the kinetics data of a joint formation during aluminum alloy brazing. Data was generated by several groups of experiments conducted under conditions of a controlled oxygen level of the background brazing atmosphere. Generated data are examined to identify the phases of the joint formation and the time frame of its evolution. Specifically, the triple line kinetics data are analyzed to verify whether a power law between (1) the triple line of the molten metal preceding joint formation and (2) the formation time can be established for each formation phase. In addition, both initial and residual clad thicknesses on brazing sheets are studied to check phenomenologically an impact of silicon diffusion on joint formation. Formation shapes are also inspected in order to study if a 2-D configuration of joint formation is present. The kinetics data from different sets of experiments under adverse atmosphere conditions are compared to understand the impact of oxygen level on joint formation. This study is not necessarily aimed at building a mathematical model for T-Joint formation during brazing process, but intends to understand possible influential parameters on the development of the formation.
KEYWORDS: Aluminum Brazing, Kinetics, T-Joint, Background Atmosphere, Capillary Flow.
|
2 |
Nanoparticle-assisted diffusion brazing of metal microchannel arrays : nanoparticle synthesis, deposition, and characterizationEluri, Ravindranadh T. 30 March 2012 (has links)
Microchannel process technology (MPT) offers several advantages to the field of nanomanufacturing: 1) improved process control over very short time intervals owing to shorter diffusional distances; and 2) reduced reactor size due to high surface area to volume ratios and enhanced heat and mass transfer. The objective of this thesis was to consider how nanomaterials, produced in part using MPT, could be used to solve problems associated with the fabrication of MPT devices. Specifically, many MPT devices are produced using transient liquid-phase brazing involving an electroplated interlayer consisting of a brazing alloy designed for melting temperature suppression. Unfortunately, these alloys can form brittle secondary phases which significantly reduce bond strength. In contrast, prior efforts have shown that it is possible to leverage the size-dependent properties of nanomaterials to suppress brazing temperatures. In this prior work, thin films of off-the-shelf elemental nanoparticles were used as interlayers yielding joints with improved mechanical properties.
In the present investigation, efforts have been made to characterize the synthesis and deposition of various elemental nanoparticle suspensions for use in the transient liquid-phase brazing of aluminum and stainless steel. Advances were used to demonstrate the nanoparticle-assisted diffusion brazing of a microchannel array. In the first section, a silver nanoparticle (AgNP) interlayer was produced for the diffusion brazing of heat exchanger aluminum. Efforts are made to examine the effect of braze filler particle size (~5 nm and ~50 nm) and processing parameters (heating rate: 5ºC/min and 25ºC/min; brazing temperature: 550ºC and 570ºC) on thin coupons of diffusion-brazed 3003 Al. A tensile strength of 69.7 MPa was achieved for a sample brazed at 570°C for 30 min under 1 MPa with an interlayer thickness of approximately 7 μm. Further suppression of the brazing temperature to 500ºC was achieved by sputtering a 1 µm thick layer of Cu before depositing a 5 nm thick film of AgNPs resulting in a lap shear strength of 45.3±0.2 MPa. In the middle section of this thesis, several techniques are investigated for the synthesis of sub 10 nm diameter nickel nanoparticles (NiNPs) to be used in the diffusion brazing of 316L stainless steel. The average NiNP size was varied from 9.2 nm to 3.9 nm based on the synthesis technique, solvent and reducing agent used. Conventional wet-chemical synthesis using NiCl₂.6H₂O in ethylene glycol (solvent) and N₂H₄.H₂O (reducing agent) resulted in the formation of 5.4 ± 0.9 nm NiNPs. Continuous flow synthesis using a microchannel T-mixer (barrel diameter of 521µm) and a 10 second residence time of reactants in a bath temperature of 130ºC resulted in a particle size of with 5.3 ± 1 nm. To make the synthesis safer and less energy intense, microwave heating was used along with less toxic Ni(CH₃CO₂)₂·4H₂O (nickel salt), propylene glycol (solvent) and NaPH₂O₂ (reducing agent) yielding 3.9 ± 0.8 nm diameter NiNPs. For the final section, nickel nanoparticles were synthesized using NiCl₂.6H₂O (nickel salt), de-ionized water (solvent), NaBH₄ (co-reducing agent), N₂H₄.H₂O (reducing agent) and polyvinylpyrolidone (capping agent) yielding 4.2 ± 0.6 nm NiNP. Several deposition techniques were investigated for controlling film thickness and uniformity in the diffusion brazing of 316L stainless steel (SS). Using in-house prepared NiNP and automated dispensing, a hermetic joint up to 70 psi (tested pressure) was obtained in 316L SS substrates under brazing conditions of 800ºC, 2 MPa and 30 min. Throughout the course of this thesis, techniques used for characterizing nanoparticles, films and joints included FT-IR, XRD, SEM, TEM, HRTEM, EDS, EPMA, DSC, mass spectrometry, and lap-shear testing. / Graduation date: 2012
|
Page generated in 0.0724 seconds